
www.java.computing.me.uk 

www.computing.me.uk                       Page 1 

 

Programming 
In Java 

 
 

BOOK 1 
 

Introduction 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 2 

CONTENTS 
 

1. SOME PRELIMINARIES ............................................................................................... 4 
1.1 The Difference Between the Internet and the Web .............................................................................. 4 
1.2 Java Is Platform Independent .............................................................................................................. 4 
1.3 Java Is Object Oriented ....................................................................................................................... 4 
1.4 So What Do I Need .............................................................................................................................. 4 
1.5 The Java Development Kit ................................................................................................................... 5 

1.5.1 The Components ......................................................................................................................................... 5 

1.6 The Normal Process of Compiling and Running a Java Program ....................................................... 6 
1.6.1 Setting Your System PATH and CLASSPATH Variables ............................................................................ 6 
1.6.2 Developing, Compiling and Running ............................................................................................................ 6 

1.7 The Java Runtime System (JRE) ......................................................................................................... 7 
1.7.1 Deploying Applications with the Java 2 Runtime Environment .................................................................... 7 

2. INTRODUCTION TO CLASSES AND OBJECTS ......................................................... 8 
2.1 Object Oriented Programming ............................................................................................................. 8 
2.2 Object Oriented Analysis and Design .................................................................................................. 9 
2.3 The Class ............................................................................................................................................. 9 
2.4 Sending Messages to Objects ........................................................................................................... 11 
2.5 The Classes and Objects in a Simple Banking System ..................................................................... 12 

2.5.1 The Class Diagram .................................................................................................................................... 12 
2.5.2 The Object Diagram ................................................................................................................................... 13 

2.6 The Account Class ............................................................................................................................. 13 
2.7 Encapsulation (Setter and Getter Methods) ...................................................................................... 14 

2.7.1 Using The Keyword (this) To Refer to The Instance Variables .................................................................. 14 
2.7.2 Testing the Account Class ......................................................................................................................... 14 

2.8 Creating Objects - The Constructor ................................................................................................... 15 
2.8.1 Variable Initialisation .................................................................................................................................. 15 

2.9 Creating Objects ................................................................................................................................ 15 
2.9.1 The new Operator and Reference Semantics ............................................................................................ 15 

2.10 Practical Work .................................................................................................................................... 16 
2.11 Reference Semantics and Object Comparison .................................................................................. 16 
2.12 The Branch Class ............................................................................................................................... 18 

2.12.1 Testing the Branch Class ........................................................................................................................... 19 

2.13 Practical Work .................................................................................................................................... 20 
2.14 Sample Code for The Banking Classes ............................................................................................. 21 

2.14.1 The Account Class ..................................................................................................................................... 21 
2.14.2 The Customer Class .................................................................................................................................. 21 
2.14.3 The Branch Class ...................................................................................................................................... 21 
2.14.4 The Bank Class ......................................................................................................................................... 22 

2.15 The Structure of a Java Program ....................................................................................................... 22 
2.16 Overloading The Object Constructor ................................................................................................. 23 
2.17 Class Constants ................................................................................................................................. 24 

3. SOME JAVA BASICS ................................................................................................. 24 
3.1 Scalars and Objects ........................................................................................................................... 24 
3.2 Literals ................................................................................................................................................ 24 

3.2.1 Number Literals ......................................................................................................................................... 24 
3.2.2 Boolean Literals ......................................................................................................................................... 24 
3.2.3 Character Literals ...................................................................................................................................... 24 
3.2.4 A Possible Problem When Using Floating-point Literals ............................................................................ 25 

3.3 Some of the more common Java operators ....................................................................................... 25 
3.3.1 The Relational Operators, .......................................................................................................................... 25 
3.3.2 The Logical Operators, .............................................................................................................................. 25 
3.3.3 The Assignment Operator .......................................................................................................................... 25 
3.3.4 The if () else Construct .............................................................................................................................. 26 
3.3.5 The ? : Construct ....................................................................................................................................... 26 
3.3.6 The switch Construct ................................................................................................................................. 26 
3.3.7 The while and do while Constructs ............................................................................................................ 26 
3.3.8 The for Construct ....................................................................................................................................... 27 
3.3.9 The break Statement ................................................................................................................................. 27 
3.3.10 The continue Statement ............................................................................................................................. 27 

3.4 Arrays ................................................................................................................................................. 27 
3.4.1 Declaring Arrays ........................................................................................................................................ 27 



www.java.computing.me.uk 

www.computing.me.uk                       Page 3 

3.4.2 Array Allocation .......................................................................................................................................... 27 

3.5 Strings ................................................................................................................................................ 28 
3.5.1 Testing if Two Strings are Equal ................................................................................................................ 29 
3.5.2 A note on the == operator and the equals() method for String Objects ...................................................... 29 

4. CLASS VARIABLES AND CLASS METHODS .......................................................... 30 
4.1 Class Variables and Class Methods Explained ................................................................................. 30 
4.2 Class (static) methods can only make changes to class variables .................................................... 31 
4.3 Class Methods in The Java Classes .................................................................................................. 31 
4.4 The System.out Class Variable .......................................................................................................... 32 

5. THE VECTOR CLASS ................................................................................................ 32 
5.1 Vectors are Like Arrays, but… ........................................................................................................... 32 
5.2 A Simple Vector Example .................................................................................................................. 32 
5.3 The elements() Method ...................................................................................................................... 33 
5.4 Use of Object Wrappers with Vectors ................................................................................................ 34 
5.5 The Vector and the equals() method ................................................................................................. 35 
5.6 The Banking Classes Updated to Use Vectors and Encapsulation ................................................... 36 

5.6.1 The Account Class ..................................................................................................................................... 36 
5.6.2 The Customer Class .................................................................................................................................. 37 
5.6.3 The Branch Class ...................................................................................................................................... 37 
5.6.4 The Bank Class ......................................................................................................................................... 39 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.java.computing.me.uk 

www.computing.me.uk                       Page 4 

1. SOME PRELIMINARIES 
 
 

1.1 The Difference Between the Internet and the Web 
 
The Internet is the network infrastructure. It is a collection of computers able to communicate with one 
another, using a suite of protocols. Computers and networks are registered with the Internet Information 
Center (InterNIC). The Web refers to the web of inter linked documents available on the internet. 
 
 

1.2 Java Is Platform Independent 
 
Many people connect Java directly with the Internet but many organisations are making the change to Java 
as a main stream programming language and are discovering that it offers more than its original purpose of 
implementing applets for Web pages. It can be used as a robust and versatile computing platform for 
building distributed software applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The above diagram shows, for example, a java source program written on a Pentium machine can be run on 
a Unix machine. It is the Java bytecode program that is transferred to the host machine and then interpreted 
by the host machine. 
 

 

1.3 Java Is Object Oriented 
 
You can write Java programs without fully understanding about object technology but you will never write 
powerful Java programs that exploit all the features of object technology unless you have a sound grasp of 
objects. 

 

 

1.4 So What Do I Need 
 

To develop Java programs you will need 

• the Java software development kit 

• a suitable development environment (an IDE or an editor) 

You can download the Java software development kit from Sun Systems. At the time of writing these notes 

the kit was available at  

www.javasoft.com 

 

  Java 

source code 

----------- 

--- 

---------- 

----- 

---- 

Pentium 

Java Compiler 

Unix 

Java Compiler 

AppleMac 

Java Compiler 

 

Java bytecode 

program 

(Platform 

independent) 

Pentium  

Java 

Interpreter 

AppleMac 

Java 

Interpreter 

Unix 

Java 

Interpreter 



www.java.computing.me.uk 

www.computing.me.uk                       Page 5 

From the main page of the site select Products & APIs. You should then be able to find the following two 

links.  
The software development kit is downloaded with 

   JavaTM 2 SDK Standard Edition v1.3.1 (SDK) 
and the supporting documentation with 
    JavaTM  2 Platform, Standard Edition, v 1.3.1 Documentation (Docs) 
 
(both are pretty big so be prepared for a wait…) 

 

To create your Java source code you will need an IDE or a simple editor. There are lots of shareware 

products available. Search the web and find one that suits you. One that I found very good was a product 

called JCreator available from 

www.JCreator.com 

 
There are of course commercial products like JBulder, J++,   

 

1.5 The Java Development Kit 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.5.1 The Components 
 
This is the collection of tools that you will use to compile, run and debug Java programs. The components of 
the kit are: 
appletviewer 
The appletviewer is a utility, which is used to display code, which has been embedded into HTML files. It is 
used to debug a Java applets before committing them to the more normal environment of a browser. 
 
java 
java is the interpreter that runs the object code produced by the Java compiler javac. You will use this 
program very frequently. 
 
javac 
javac is the compiler for the Java programming language. This processes a character file containing Java 
source code and produces a class file, which can be executed by java. Again, you will use this program very 
frequently. 
javadoc 
javadoc is the Java documentation generator. This tool takes Java source code into which has been 
embedded special comments and will produce HTML files that contain useful documentation about the code 
that has been processed. 
 
javah 
javah is the native method C file generator. This is used to interface code written in C with the Java code that 
you have written. 
 
javap 
javap is a class disassembler. It processes the object code produced by java and displays it in a human 
readable form.  
 

  Java code 

 

----------- 

--- 

---------- 

----- 

---- 

Java 

 Compiler 

 

Java bytecode 

the 

.class  

file 

Java 

Interpreter 

 

javac java 



www.java.computing.me.uk 

www.computing.me.uk                       Page 6 

jdb 
jdb is a very primitive debugger which allows you to carry out common debugging functions such as 
examining variable values. Without access to a better debugger it is probably better to rely on inserting your 
own diagnostic print statements in the code whenever you have run-time problems. 
 
 

1.6 The Normal Process of Compiling and Running a Java Program 
 
1.6.1 Setting Your System PATH and CLASSPATH Variables 
In the following explanation it is assumed that the Java SDK has been installed in the directory c:\jdk1.3. 
 
In Dos, Windows, Unix and other operating systems the main role of the PATH variable is to enable the 
operating system to find programs to be executed. The Java SDK compiler (javac.exe) and the Java SDK 
interpreter (java.exe) are programs so when you execute these program (to compile Java source code and 
then to run your Java programs) the operating system needs to be able to find javac.exe and java.exe. To 
enable your operating system to do this you need to ensure that the PATH variable contains the path where 
the Java compiler (javac.exe) and where the Java interpreter (java.exe) are located. 
 
For example if the locations are, 
    c:\jdk1.3\bin\javac.exe 
    c:\jdk1.3\bin\java.exe 
 
your PATH variable must contain the entry, 

   PATH=...;c;\jdk1.3\bin;... 
where the dots represent other path entries. 
 
Your CLASSPATH variable tells the Java intepreter (java.exe) where to find your Java classes. You must set 
CLASSPATH to identify the locations of your classes. For example if you are developing some Java work 
and your class files are stored in the folder, 
    c:\dump\javawork\ja2 
 
then the system CLASSPATH variable must include 

   CLASSPATH =...;c:\dump\javawork\ja2;... 
where the dots represent other path entries. 
Some integrated development environments (eg JBuilder) will handle many aspects of the path and 
classpath roles. If you are using such an IDE the strict requirement of setting the path and classpath 
variables may not apply. There are other ways within the IDEs that these requirements can be met. However 
for a full mastery of the Java SDK you should understand the importance of these two variables. 
 
1.6.2 Developing, Compiling and Running 
 

• Create the source code of the class using your chosen editor. Suppose the name of the class is 
SimpleSeat... 

  public class SimpleSeat { 
  } 
 

• Save the file containing the class as SimpleSeat.java.  
 

• Note that the file name has to be the same as the class name. 
 

• If there is more than one class in the file then nominate only one of the classes as public by prefacing it 
with the keyword public and use that class name as the file name. 

 

• Compile the source code using the Java compiler, 
javac SimpleSeat.java.  

 

• The source code of your class should now compile and will either produce syntax errors or will compile 
cleanly. If syntax errors were produced then correct them and recompile the code. 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 7 

• Once the code has been clean compiled then run the program by using the Java interpreter. 
java SimpleSeat 
 
 

1.7 The Java Runtime System (JRE) 
 
When you install the Java SDK the runtime system is also installed. On my Win98 machine the run time 
system (JRE) was installed as c:\Program Files\JavaSoft. For full information you should consult the readme 
file in this folder. 
 
The Java(TM) 2 Runtime Environment contains the Java virtual machine, runtime class libraries, and Java 
application launcher that are necessary to run programs written in the Java programming language. It is not 
a development environment and does not contain development tools such as compilers or debuggers. For 
development tools, see the Java 2 SDK, Standard Edition, v1.3.   
 
The Java 2 Runtime Environment includes the Java Plug-in product which enables support for the Java 2 
platform on recent releases of Netscape Navigator and Microsoft Internet Explorer. For more  
information, see the Plug-in web page at http://java.sun.com/products/plugin/ . 
 
1.7.1 Deploying Applications with the Java 2 Runtime Environment 
 
A Java-language application, unlike an applet, cannot rely on a web browser for installation and runtime 
services. When you deploy an application written in the Java programming language, your software  
bundle will probably consist of the following parts:  
            Your own class, resource, and data files.  
            A runtime environment.  
            An installation procedure or program.  
 
To run your application, a user needs a Java virtual machine, the Java platform core classes, and various 
support programs and files. This collection of software is known as a runtime environment.  
 
The Java 2 SDK software can serve as a runtime environment. However, you probably can't assume your 
users have the Java 2 SDK installed, and your Java 2 SDK license doesn't allow you to redistribute SDK 
files.  
 
To solve this problem, Sun provides the Java 2 Runtime Environment as a free, redistributable runtime 
environment. The final step in the deployment process occurs when the software is installed on individual 
user system. Installation consists of copying software onto the user's system, then configuring the user's 
system to support that software.  
 
This step includes installing and configuring the runtime environment. If you use the Java 2 Runtime 
Environment, you must make sure that your installation procedure never overwrites an existing installation, 
unless the existing runtime environment is an older version.  
 
The Win32 version of the Java 2 Runtime Environment is distributed as a self-installing executable. A simple 
way to redistribute the Java 2 Runtime Environment is to include this executable in your software bundle. 
You can then have your installation program run the executable to install the Java 2 Runtime Environment, 
or simply instruct the user to install the Java 2 Runtime Environment before installing the rest of your bundle. 
In this installation model, the end-user will have a "public" copy of the Java 2 Runtime Environment just as if 
it had been downloaded from Sun's website and installed separately.  
 
 
 
 
 
 
 
 
 
 



www.java.computing.me.uk 

www.computing.me.uk                       Page 8 

2. INTRODUCTION TO CLASSES AND OBJECTS 
 

2.1 Object Oriented Programming 
 
Object Oriented programming sees the world as a community of interacting objects. As part of the overall 
application domain, objects assume responsibilities for managing parts of the system. This collection of 
objects, working together, provides a complete software solution to the application domain. Objects 
communicate by sending messages to each other. In one sense objects provide services for other objects. 
During its lifetime an object may change its state as the demands of the system change. No one object can 
change the state of another object other than by sending the target object a message that it has previously 
validated and approved. In order to change it’s own state an object may even send itself an approved 
message. In any particular application some objects may persist for the whole life span of the application. 
Others may be temporal in that they are created to carry out some required task and when their work is done 
they are destroyed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Object oriented programming aims to construct as modular a program as possible, enabling the easy 
update and reuse of code and understanding of the software system. The philosophy behind OOP is to 
model the real world as closely as possible. A problem is decomposed into easily understood concepts. All 
problems are composed of concepts, such as Customer or Loading Bay or Warehouse. If these are 
programmed by putting their behaviours and properties into modules they can be included in any program 
where they may be required. The modules described above are declared as classes. They are blueprints 
from which objects, individual instances of the class, are instantiated. You could be described as an object, 
an instance, of the class Human. 
 
A program accomplishes its work by passing messages between objects, through the cooperation of 
connections of objects, rather than by a flow of information around a system.  
 
It is important to keep the inner workings of a class secret from the rest of the co-operating objects. This 
guarantees data security and is called encapsulation. Communication between objects is achieved 
through a number of methods which comprise the interface of an object.  
 
The behaviours and properties of a class may be altered without affecting the other parts of a program if the 
interface is left unchanged. 
 
Another object oriented programming technique is called inheritance. Having decided on a group of 
concepts to model, it is not uncommon to find that several have behaviours and properties in 
common. These may be separated to form a more general class from which more particular ones may 
be derived. Hierarchies of classes may be developed in this way, each succeeding level incorporating 
the members of those above them. 
 
It is clear that Man and Woman are both derived from Human, but it may be required that Human is in 
turn derived from Mammal if other classes in the program share the peculiarities of mammals. This 
will prevent a great deal of duplication of code and also simplify a very complex concept like Human 
by breaking it down into more manageable parts. 
 

object 

object 

object 

object 

object 

object 



www.java.computing.me.uk 

www.computing.me.uk                       Page 9 

2.2 Object Oriented Analysis and Design 
 
The main purpose of applying oo anaylsis and design methods to an application domain is to  

• identify the classes in the system 

• identify the role of each class in the system 

• identify the relationships between these classes.  
 
Object-oriented analysis and design can be characterised as 
 

• Finding the classes 
Identifying the classes (objects) that are pertinent to a particular problem domain. 
 

• Specifying the responsibilities of the class 
Determining the role and responsibility of each class within a system 
 

• Identifying the collaborators for each class 
Determining those classes without whose assistance it would not be possible for a class to carry out its 
responsibilities 
 

• Refining responsibilities with use-cases 
Learning more about how the objects in a design interact and communicate with one another through the 
use of sample execution scenarios or role playing. Use-cases capture the dynamics of an object-oriented 
system - the messages of interest that are passed between the objects, and the associated flow of control. 
 

• Identifying relationships between classes 
Refining a design through the identification of important relationships between classes (eg is-a, is-like and is-
part-of) 
 

• Refining classes into hierarchies 
Discovering logical is-a relationships between classes using the notions of specialization and generalization, 
Translating into physical class hierarchies to achieve code reuse through inheritance and subclassing. 
Discovering abstract classes is an important activity in maximizing code reuse. 
 

• Factoring Responsibilites 
Migrating behaviour from one class of objects to another within an organised set of related classes so as to 
achieve implementations of behaviour which may be shared by subclasses 
 

• Looking for reusable design frameworks 
Identifying subsystems of collaborating classes, instances of which interact with each other in a manner 
which can be reused for some particular task or for some particular application domain. 
 

2.3 The Class 
 
Object Oriented programming is concerned with, 
 

• Designing and building classes, 

• identifying relationships between the classes 

• creating instances (objects) of  these classes, 

• writing programs by putting these objects to work and getting the objects to communicate with each other 
by sending messages to each other 

 
 

 
 
 
 
 

  
 
 
 
 
 
 

 

class 

designing/building classes creating instances of these 

classes 
sending messages to the 

objects 

 

Objects communicating 

through messages 

object 

the class library the program 



www.java.computing.me.uk 

www.computing.me.uk                       Page 10 

 
Essentially a class is a general description of all objects instanced from the class. We create and manipulate 
instances of classes, called objects... hence Object Oriented Programming. Particular instances of a class 
are called objects. 
 
In object terminology the data is known as the object’s attributes which are used to describe the state that an 
object (an instance of the class) might be in. The operations are called methods and are used to define the 
behaviour of the object. The attributes (data) describe the state of the object and the methods describe the 
behaviour of the object. The object's methods are used to query the state of the object and to change the 
state of the object.  State is held by instance variables. The collective values of all the instance variables is 
the state of the object. A change to any one of these variables changes the state of the object. 
 
 
 
 
 
 
 
 
 
 
 
 
 
When we say that an object (ie an instance of the class) is fully encapsulated we mean that the only way into 
the object’s data is by using the object's methods. The only way in which the object’s state can be changed 
is by using the object's methods, and even then, the only changes that can take place on the data are those 
that the designer/implementor of the object’s class has allowed for. 
 
The set of methods provide an interface to the object, in that we can use some methods to query the object's 
state and others to change the object's state. This set of methods is often called the object’s protocol. This 
set of methods is defined by the class of the object, not by the object. 
 
Protection of the attributes (the instance variables) by the methods produces the idea of encapsulation. 
Since the only access to the object's attributes is through the object's methods the object's state can be 
protected against random 'outside' influences. The object's state can only be changed in a controlled way... 
by the methods. In programming terms this means that a team of programmers working on a project cannot 
'randomly' change an object's data using their own methods. There is a consistent, controlled interface to the 
object's data. Access to data of an object class is only available through the methods of the class. 
Encapsulation results in reliable, maintainable code that can have one part of it changed without the rest 
falling over as a result of dependencies. 
The user of the object does not need to be aware of the internal data structures. In many ways a user sees 
an object only through it’s methods… it’s interface. 
 
In Java the attributes are defined by the instance variables and the methods that act on the instance 
variables are the instance methods (usually shortened to just methods). 
 
The class is a general description of the set of all its objects. 
 
An object is a self-contained piece of software that responds to a particular set of messages and is able to 
hold information.  
 
The information that an object holds (the values of its attributes/instance variables) at any one time is known 
as its state.  
 
Objects are organised into classes. Objects belonging to the same class (instances of the class) have the 
same attributes and respond to the same set of messages, responding to each message in an identical 
manner. Any initialisation of each instance is identical.  
 

Data 

Methods 

Encapsulation - access to the data only through 

the methods 
 

DATA 

 

 

METHODS 

 

OBJECT 



www.java.computing.me.uk 

www.computing.me.uk                       Page 11 

theAccount.addAmount(100); 

A key feature of object technology is abstraction - the reduction of complex systems into component parts 
represented by objects. This abstraction enables small teams to understand and develop large, complex 
systems. 
 
Object technology lets developers define new data types that match real world items (objects) such as ‘bank 
account’ or ‘invoice’. Using object technology, the concept gap in taking real world objects and turning them 
into software is minimised. 
When class B is a subclass of class A, the objects of class B respond to all the messages for objects of class 
A, and may also respond to some additional messages.  
 
The objects of the subclass have the same properties as those of its superclass, and may have additional 
ones.  
 
An object oriented software system is structured as a community of interacting agents, called objects. Each 
object has a role to play. Each object provides a service, or performs an action, that is used by other 
members of the community (OO Programming, Budd,) 
 
Objects are like agents... we send messages (instructions/requests) to objects and they carry out some 
service for us. Objects have responsibilities to perform as part of the overall software project. 
 

2.4 Sending Messages to Objects 
 
The Java expression theAccount.addAmount(100); 
is an example of the message addAmount being sent to the receiver object theAccount. The message 
carries with it a parameter (100) that will be used by the corresponding method. 
   
 
 
 
          
 
 
 
 
 
 
 
When an object receives a message it searches through its protocol list (ie the list of methods defined in its 
class) in an attempt to find a matching method. If it finds one the method is executed. If one cannot be found, 
then if the object has any super classes (see next section) a search is carried out in the super classes 
protocol lists. If no corresponding message can be found the Java system will report an error. To invoke a 
method you must send a message - to some object. 
Notice also that messages can be sent to classes as well as objects. You will see more details of this later in 
these notes.  
 

• A message may,  

• change the state of an object;  

• make an object do something without altering its state;  

• get back some useful information from an object;  

• cause an object to send a message to another object;  

• be used by an object to send a message to itself.  

• The name of a message is called the message selector.  

• Some messages have arguments in order to include information with the message.  

• The set of messages to which an object responds is called its protocol.  

• An object is able to find out about its own state.  {use this.queryMethod() } 

• The initial state of an object has to be prescribed - usually the class constructor does this. 

• A class groups together objects with the same characteristics (the same properties and potential 
behaviour). When programming, a class is used to define how objects (instances) of the class will be 
created.  

The receiver 

object,  

ie theAccount 

instance  

A message addAmount(100).  

It requests the Account object 

to invoke the method called 

addAmount() and use the 

argument 100 in the method 



www.java.computing.me.uk 

www.computing.me.uk                       Page 12 

• One class description serves to describe all the objects of that class – the information each can hold and 
the set of messages to which each can respond.  

• The class description is a template for its members (ie created objects), so that each member has the 
same properties to hold information and responds to the same messages with the same resultant 
behaviour.  

• The 'state' of an object is the sum total of all it’s properties values.  

• Every object has a set of attributes associated with it. The state of an object at a particular time is 
determined by the values of these attributes. 

• The protocol described by a class is the set of messages understood by the member objects.  

• The same message sent to objects of different classes may provoke a different behaviour in each class. ( 
this is known as polymorphism) 

• A class may have a subclass.  
 
 

2.5 The Classes and Objects in a Simple Banking System 
 
The first version of our simple system will be constructed using the following classes 

an Account class      a Customer class 
a Branch class       a Bank class 

Later, in the section on inheritance, we shall take another look at the Account class. 
 
2.5.1 The Class Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

has 

has 

owns 

* 

* 

* 

Account 

 theAccountNumber 

 theBalance 

 

 Account() 

 setAccountNumber() 

 getAccountNumber() 

 setBalance() 

 getBalance() 

 credit() 

 debit() 

 

 

 

 

 

Customer 

 theName 

 theAccountsList 

 numAccounts 

 

 Customer() 

 getName() 

 getNumAccounts() 

 addAccount() 

 getAccounts() 

 getAccount() 

 

 

 

 

 

 

Branch 

 theName 

 theCustomerList 

 numCustomers 

 nextAccountNumber 

 

 Branch() 

 getName() 

 addCustomer() 

 getNumCustomers() 

 getCustomers() 

 createAccount() 

 credit() 

 debit() 

 getAccount() 

 getCustomer() 

 transfer() 

 

  

 

 

 

 

 

 

Bank 

 theName 

 theBranchList 

 numBranches 

 

 Bank() 

 getName() 

 addBranch() 

 getBranches() 

 getNumBranches() 

  

  

 

 

 

 

 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 13 

2.5.2 The Object Diagram 

 
 
 
 
 
 
 
 
 
 
 
 
Some points to note : 

• from within the Bank object a reference is kept to a list of branch object 

• each element of the list is a reference to a Branch object 

• each Branch object keeps a reference to a list of customer objects 

• each customer object keeps a reference to a list of Account objects. 
 

2.6 The Account Class 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
public class Account { 
 private String theAccountNumber;  
 private int theBalance; 
  
 public Account(String accN,int initBal) { 
    this.setAccountNumber(accN); 
     this.setBalance(initBal); 
 } 
  
 public void setAccountNumber(String aNumber) { 
  theAccountNumber = aNumber; 
 } 
 
   public String getAccountNumber() { 
  return theAccountNumber; 
 } 

public void setBalance(int anAmount) { 
    theBalance = anAmount; 
 }     
 
   public int getBalance() { 
  return theBalance; 
 } 
 

For an Account object this set of 

6 instance methods constitute 

the object’s protocol. 

Account 

 

 theAccountNumber 

 theBalance 

 Account() 

 setAccountNumber() 

 getAccountNumber() 

 setBalance() 

 getBalance() 

 credit() 

 debit() 

 

 

 

 

 

 The Account class 

 has 2 instance variables 

 

 a constructor 

 

 

 

 and 6 instance methods 

We often use this 

'box' notation when 

describing a class, 

 

Customer List 

Branch List 

Account List 

 

 Bank 

 

Customer 

Account 

 

Branch 
 

the Java class looks like this... 

these are the 2 instance variables 

The constructor is used when an instance of 

the class (ie an object) is created with the 

new operator. You can think of the 

constructor as initialising the object by 

setting any instance variable values with 

initial values.. ie setting the initial state of 

the object. 

void here tells us that the method 

setAccountNumber() does not return a 

value. 

String here tells us that the method 

getAccountNumber() will return a String 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 14 

   public void credit(int anAmount) { 
  int tempBal = this.getBalance(); 
  tempBal += anAmount; 
  this.setBalance(tempBal); 
 } 
 
 public boolean debit(int anAmount) { 
  int tempBal = this.getBalance(); 
    if (tempBal - anAmount >= 0) { 
   tempBal -= anAmount; 
   this.setBalance(tempBal); 
        return true;                         
      } 
      else return false; 
   } 
} 
 

2.7 Encapsulation (Setter and Getter Methods) 
 
The code of the Account constructor is an example of encapsulation being used. 
Consider the instance variable theBalance. In addition to its declaration, there are a number of references to 
the instance variable within the various methods of the Account class. The two methods setBalance() and 
getBalance() are known as accessor methods (often called setter and getter methods). Notice how every 
reference to the balance instance variable is made by using the methods setBalance() and getBalance()... 
except of course within these two methods. 
 
There is a strong argument within the object world that such accessor methods should always be used to set 
and return instance variables values. The argument for using accessor methods is based around 
maintenance considerations. If the internal representation of an instance variable is changed then methods 
which reference the instance variables by means of the accessor methods would not need updating.  
 
In software exhibiting strong encapsulation, only accessor methods are allowed to make direct 
reference to instance variables. Unfortunately Java does not enforce encapsulation. 
 
So the following is a (poor...) alternative to using strong encapsulation. 

public Account(String accN,int initBal) { 
theAccountNumber = accN; 

     theBalance = initBal; 
 } 
 

public boolean debit(int anAmount) { 
  if (theBalancel - anAmount >= 0) { 
   theBalancel -= anAmount; 
        return true;                         
      } 
      else return false; 
   } 
 
2.7.1 Using The Keyword (this) To Refer to The Instance Variables 
Java also allows you to use this to refer to the instance variables of the class usually in the following context 
where an argument name is the same as an instance variable name. Probably best practice to avoid this. 
 
public setLength(int maxLength) { 

this.maxLength = maxLength; 
} 
2.7.2 Testing the Account Class 
 
 
 
 

tempBal += anAmount; 

is the same as 

tempBal = tempBal + anAmount; 

When we look at static (class) methods later, the significance of the 

keyword static in the header of the main method will be explained. 

In using the keyword this, the 

object is effectively sending a 

message to itself. 

 

The use of the keyword this 

arises when encapsulation is 

enforced with the methods. 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 15 

We now construct another class that we use to can test the methods of the Account class. 
public class TestAccount { 
 public static void main(String args[]) { 
   Account myAccount = new Account(“1234”,100); 
      String theAccNumber = myAccount.getAccountNumber(); 
      int theBalance; 

theBalance = myAccount.getBalance(); 
      System.out.println(theAccNumber + " : " + theBalance); 
      myAccount.credit(50); 
      theBalance = myAccount.getBalance(); 
      System.out.println(theAccNumber + " : " + theBalance); 
 
  boolean canDebit; 
  canDebit = myAccount.debit(100); 
      if (canDebit) { 
   theBalance = myAccount.getBalance(); 
       System.out.println(theAccNumber + " : " + theBalance); 
  } 
      else System.out.println("Amount too large..."); 
 
     canDebit = myAccount.debit(51); 
      if (canDebit) { 
   theBalance = myAccount.getBalance(); 
       System.out.println(theAccNumber + " : " + theBalance); 
  } 
      else System.out.println("Amount too large..."); 
 } 
} 
 

2.8 Creating Objects - The Constructor 
The constructor is used to when an instance of the class (ie an object) is created with the new operator. You 
can think of the constructor as initialising the object by setting any instance variable values with initial 
values.. ie setting the initial state of the object. The primary role of the class constructor is to reserve memory 
for a new object as it is created. An interesting point is that the constructor only reserves memory space for 
the instance variables, since it does not have to reserve space for the methods. The methods exist only with 
the class. This means that when we create more than one object from a class the methods exit only once. 
Methods are tied to the class and not to the object. All objects of the same class have the same set of 
methods, the same protocol. 
There are 2 kinds of constructor. 

1. The default constructor. 
2.  A user defined constructor. 

 
1. The Default Constructor 
This constructor does nothing more than reserve memory space for the object. It performs no processing on 
the object's data. See 6.6 for further comments on this. 
2. A User Defined Constructor 
When objects are created we usually want to assign initial values to the object, ie to set up the initial state of 
the object. Since objects of the same class are often required to be created in the same state, this initial 
state is normally achieved by the parameters we pass to the constructor method. 
 
2.8.1 Variable Initialisation 
Only instance variables are automatically initialised to their default values.  Local variables, those declared 
and used in methods, must be set before use. 
 

2.9 Creating Objects 
 
2.9.1 The new Operator and Reference Semantics 
New is an operator, (actually a unary operator). The operand of new is the class constructor. The 
combination of new and the class constructor creates and allocates space for an object (an instance) of the 

here we send the message 

getBalance() to the object 

referenced by myAccount. The 

object myAccount returns the 

current balance and the value is 

assigned to the temporary variable 

theBalance, which is then printed. 
here we just ask the myAccount 

object to credit it's current balance 

with 50. No response is received from 

the object. 

here we ask the myAccount 

object to attempt to debit its 

current balance. If the object 

can carry out the debit it 

indicates this by returning a 

true value. If it can't carry 

out the debit the object 

returns a false value. 



www.java.computing.me.uk 

www.computing.me.uk                       Page 16 

class. The constructor code is executed and new returns a pointer to the allocated space. The execution of 
the code 
 
 Account myAccount = new Account("1234",100); 
 
produces the following, 
 
 
 
 
  
 Account myAccount = new Account("1234",100); 
 
the identifier myAccount is a reference to the Account object. The identifier myAccount contains the address 
of the Account object. Since we never deal with objects directly, but reference them by variables we say that 
Java uses reference semantics. 
 

2.10 Practical Work 
 
You should now attempt exercises 1 and 2 from the Java Exercises. 
Exercise 1 requires you to add extra code to the Account test class and exercise 2 requires you to develop 
the Customer class and then test the methods of the Customer class. 
 
 

2.11 Reference Semantics and Object Comparison 
 
Suppose we need to ask the question if two Account objects are the ‘same’. Suppose we have 
Account myAccount = new Account(“1234”,100); 
Account yourAccount = new Account(“9876”,500); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One way of asking the question might be 
if (myAccount == yourAccount) … 
 
here it looks as though the answer will be no, and in fact the answer is no… but why ? 
 
Next consider the new situation… 
 
Account myAccount = new Account(“1234”,100); 
Account anAccount = new Account(“1234”,100); 
 
 
 
 
 
 
 
 

myAccount 

an instance of the Account class is 

created; initialised so that the instance 

variable accNumber is set to the string 

value "1234", and the instance variable 

balance is set to 100 

an Account 

object 

myAccount 

 
accNumber 

 
100 balance 

“1234” 

yourAccount 

 
accNumber  

500 balance 

“9876” 

myAccount 

 
accNumber 

100 balance 

“1234” 

“1234” 



www.java.computing.me.uk 

www.computing.me.uk                       Page 17 

 
 
 
 
 
 
 
 
Suppose we now ask the same question 
if (myAccount == anAccount)…. what now will be the answer ? 
 
Again it will be no. The Account object referenced by the variable myAccount is not the same Account object 
that is referenced by the anAccount variable. All that the == operator compares is the value of the variable 
myAccount with the value of the variable anAccount. The variable myAccount contains the address of the 
‘first’ Account object and the variable anAccount contains the address of the ‘second’ Account object. Of 
course they are not the same. 
 
But what if we want to interpret the ‘same’ as having the same state. That is we are really asking the 
question ‘are the state of two objects the same’. In many situations this is what we would really mean if we 
are asking if two objects are the same. This would be particularly relevant in searching operations. From 
above it is clear that we cannot use the == operator to answer a question if two objects have the same state. 
 
What we need is another way of carrying out the testing. It turns out there is one, albeit a rather confusing 
one. All classes in the Java API are provided with a 'default' equals() method. They all inherit one from the 
Object superclass. This means we can write the following, 
 
if (myAccount.equals(anAccount)) … 
 
But sadly this again will say no in the above case. The version of equals() inherited from the Object class 
does not compare the states of two objects, in this case two Account objects, but simply compares if they are 
the same object. It works like the == operator in that it simply tests if the variables referencing the two objects 
are equal; that is, do the two variables point to the same object. 
 
For the equals() method to work properly for any pair of Account objects we have to override the method 
from the Object class. All of this means that we have to add a new method to our Account class as follows, 
 

public boolean equals(Object obj) { 
  Account param = (Account)obj; 
  return  ( this.getAccNumber().equals(param.getAccNumber()) && 
       this.getBalance() == param.getBalance())); 
 } 
 
Generally in software applications when we ask if two ‘things’ are equal we usually mean do they have the 
same value? Now in object technology we transfer the word value to the word state. If we now ask are two 
objects equal we generally mean do they have the same state. Two objects will be equal if their 
corresponding instance variables are equal. In ‘everyday’ terms we would expect the question… does 
Account x equal Account… to be yes, if both Accounts have the same state. 
 
As this is such an important issue there are several references and explanations later in the books.  
 
 
 
 
 
 
 
 
 
 
 

 

anAccount 

 
accNumber 

 
100 balance 



www.java.computing.me.uk 

www.computing.me.uk                       Page 18 

2.12 The Branch Class 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
public class Branch { 

private String theName; 
   private Customer[] theCustomerList; 
   private int numCustomers; 
   private String nextAccountNumber; 
 
 public Branch(String aName, String aStartAccNumber) { 

theName = aName; 
  theCustomerList = new Customer[10]; // no more than 10 customers... 
      numCustomers = 0; 
      nextAccountNumber = aStartAccNumber; 
 } 
 
   public String getName() { 
  return theName; 
 } 
 
   public void addCustomer(Customer aCustomer) { 
    theCustomerList[numCustomers++] = aCustomer; 
      this.createAccount(aCustomer); 
 } 
 
   public int getNumCustomers() { 
    return numCustomers; 
 } 
 
   public Customer[] getCustomers() { 
  return theCustomerList; 
   } 
   public void createAccount(Customer aCustomer) { 
  Account aNewAccount = new Account(nextAccountNumber,0); 
  aCustomer.addAccount(aNewAccount); 
    int tempInt = new Integer(nextAccountNumber).intValue(); 
      ++tempInt; 
      nextAccountNumber = new Integer(tempInt).toString(); 

Branch 

 

 theName 

 theCustomerList 

 numCustomers 

 nextAccountNumber 

 

 Branch() 

 getName() 

 addCustomer() 

 getNumCustomers() 

 getCustomers() 

 createAccount() 

 credit() 

 debit() 

 getAccount() 

 getCustomer() 

 transfer() 

 

  

 

 

 

 

 

 

 The Branch class 

  

 

 has 4 instance variables 

 

 

 

 a constructor method 

 

 

 and 10 instance methods 



www.java.computing.me.uk 

www.computing.me.uk                       Page 19 

   } 
 
   public void credit(String anAccountNumber, int anAmount) { 
  Account targetAccount = this.getAccount(anAccountNumber); 
      targetAccount.credit(anAmount); 
   } 
 
   public boolean debit(String anAccountNumber, int anAmount) { 
  Account targetAccount = this.getAccount(anAccountNumber); 
      boolean debitOk = targetAccount.debit(anAmount); 
      return debitOk; 
   } 
 
   public Account getAccount(String accNumber) { 
    Account aTempAccount = null; 
      Customer nextCustomer; 
  for (int i = 0; i < numCustomers; ++i) { 
   nextCustomer = theCustomerList[i]; 
        aTempAccount = nextCustomer.getAccount(accNumber); 
        if (aTempAccount != null) break; 
  } 
      return aTempAccount; 
   } 
 
   public Customer getCustomer(String aName) { 
  Customer theCustomer = null; 
  for (int i = 0; i < numCustomers; ++i) { 
   if (aName.equals(theCustomerList[i].getName())) { 
         theCustomer = theCustomerList[i]; 
           break; 
   } 
      } 
      return theCustomer; 
   } 
 
 
   public boolean Transfer(Account fromAccount, Account toAccount, int anAmount) { 

// Attempt a transfer of anAmount from the first account, fromAccount, to the 
// second account, toAccount 
// return true if the transfer is valid, false otherwise 

} 
} 
 
2.12.1 Testing the Branch Class 
Testing the Branch class is a little more complicated than testing the Account and Customer classes. We 
therefore adopt a slightly different approach. We still use a test class TestBranch but this time we create a 
TestBranch object and then use this object to do the testing for us. Use this class to test your Branch class. 
 
 
public class TestBranch { 
 private Branch blackBurn; 
 
 public TestBranch() { 
  // First create some customers... 
  Customer aCustomer = new Customer("jeff"); 
      Customer anotherCustomer = new Customer("pat"); 
 
     // Next create the Branch and add some customers... 
      blackBurn = new Branch("Blackburn","1000"); 
      blackBurn.addCustomer(aCustomer); 

here we create two Customer objects 

and refer to them as aCustomer and 

anotherCustomer; the name associated 

with the aCustomer object is jeff 

create a new Branch object and 

add the two customers to the 

customer list of the branch 



www.java.computing.me.uk 

www.computing.me.uk                       Page 20 

  blackBurn.addCustomer(anotherCustomer); 
 
  // Create accounts for the customers 
      blackBurn.createAccount(aCustomer); 
      blackBurn.createAccount(anotherCustomer); 
      blackBurn.createAccount(aCustomer); 
 
      this.displayBranchDetails(); 
 
      blackBurn.credit("1000",50); 
      blackBurn.credit("1003",100); 
 
      this.displayBranchDetails(); 
 
    boolean debitOk = blackBurn.debit("1000",20); 
      if (!debitOk) System.out.println("Cannot debit account 1000..."); 
      debitOk = blackBurn.debit("1001",30); 
      if (!debitOk) System.out.println("Cannot debit account 1001..."); 
      this.displayBranchDetails(); 
 } 
 
   public void displayBranchDetails() { 
  // Display the details at the Branch 
      String theBranchName; 
      Customer nextCustomer; 
      Account[] accountsHeld; 
      Account nextAccount; 
 
  theBranchName = blackBurn.getName(); 
      System.out.println(theBranchName); 
  Customer[] customerList = blackBurn.getCustomers(); 
 
      // Process each customer... 
      int currentNumCustomers = blackBurn.getNumCustomers(); 
      for (int i = 0; i < currentNumCustomers; ++i) { 
       nextCustomer = customerList[i]; 
        System.out.println(nextCustomer.getName()); 
        accountsHeld = nextCustomer.getAccounts(); 
   // For each customer process the held accounts... 
        int currentNumAccounts = nextCustomer.getNumAccounts(); 
        for (int j = 0; j < currentNumAccounts; ++j) { 
         nextAccount = accountsHeld[j]; 
           System.out.println(nextAccount.getAccountNumber() + " : " + nextAccount.getBalance()); 
   } 
  } 
   } 
 
   public static void main(String args[]) { 
    new TestBranch(); 
 }      
} 
 

2.13 Practical Work 
 
• You should now attempt exercise 3 from the Java Exercises. 

You are required to implement the transfer() method and then add extra code to the  
TestBranch class. 

 

• Do exercise 4 which requires you to implement and test the Bank class 
 

the use of the keyword this is to send a 

message to the current TestBranch object. 

In this case it is to execute the 

displayBranchDetails() method... see below 

for the method. 

request the blackBurn Branch  object to credit account 

number 1003 with 100 



www.java.computing.me.uk 

www.computing.me.uk                       Page 21 

2.14 Sample Code for The Banking Classes 
 
2.14.1 The Account Class 
The Account class is provided as part of the notes 
 
2.14.2 The Customer Class 
 
public class Customer { 
 private String theName; 
   private Account[] theAccountsList; 
   private int numAccounts; 
 
 public Customer(String aName) { 
  theName = aName; 
  theAccountsList = new Account[6]; // no more than 6 accounts held... 
      numAccounts = 0; 
 } 
 
   public String getName() { 
  return theName; 
 } 
 
   public int getNumAccounts() { 
    return numAccounts; 
 } 
 
   public void addAccount(Account anAccount) { 
    theAccountsList[numAccounts++] = anAccount; 
 } 
 
   public Account[] getAccounts() { 
    return theAccountsList; 
   } 
 
   public Account getAccount(String anAccountNumber) { 
  Account theAccount = null; 
  for (int i = 0; i < numAccounts; ++i) { 
   if (theAccountsList[i].getAccountNumber().equals(anAccountNumber)) { 
         theAccount = theAccountsList[i]; 
           break; 
   }         
      } 
      return theAccount; 
   } 
} 
 
2.14.3 The Branch Class 
The Branch class is provided as part of the notes. Here is the additiinal transfer() method, 
   public boolean transfer(Account fromAccount,Account toAccount,int anAmount) { 
  if (fromAccount.debit(anAmount)) { 
       toAccount.credit(anAmount); 
        return true; 
  } 
  else return false; 
   } 
 
The following is an example of some additional code added to the TestBranch class to test the transfer() 
method... 

// Test the transfer() method, first a valid transfer... 
      Account sourceAccount = blackBurn.getAccount("1000"); 



www.java.computing.me.uk 

www.computing.me.uk                       Page 22 

      Account destinationAccount = blackBurn.getAccount("1001"); 
  boolean transferOk = blackBurn.transfer(sourceAccount,destinationAccount,10); 
      if (!transferOk) System.out.println("Should not see this message..."); 
   // See the results of the transfer.. 
      this.displayBranchDetails(); 
  // Now an invalid transfer... 
      transferOk = blackBurn.transfer(sourceAccount,destinationAccount,100); 
      if (!transferOk) System.out.println("Should see this message... transfer invalid"); 
 
2.14.4 The Bank Class 
public class Bank { 
 private String theName; 
   private Branch[] theBranchList; 
   private int numBranches; 
 
 public Bank(String aName) { 
  theName = aName; 
  theBranchList = new Branch[5]; // no more than 5 branches... 
      numBranches = 0; 
 } 
 
   public String getName() { 
  return theName; 
 } 
 
   public void addBranch(Branch aBranch) { 
    theBranchList[numBranches++] = aBranch; 
 } 
 
   public Branch[] getBranches() { 
  return theBranchList; 
   } 

public int getNumBranches() { 
    return numBranches; 
 }     
} 

2.15 The Structure of a Java Program 
 
A typical Java program, or application as it is often called, will have the following structure, 
 
 
 
 
 
 
 
 
One of the classes must contain a main() method. The application is run with interpretation commencing at 
the main() method. The Java run time system will search out the main() method and begin execution at this 
point and use the facilities of the other classes when it needs to. Another feature of this approach is that 
each class can be defined in a separate file. Notice that this means a minimum Java program (application) 
would consist of just one class definition file containing a main() method. 
 
 
 
 
 
 
 

 class ... { 

  state; 

  methods 

 } 

 

 

 class ... { 

  state; 

  methods  

  main() 

 } 

 

 

 class ...  { 

  state; 

  methods 

 } 

 

 

 class ... { 

  state; 

  methods 

 } 

 

 

 class ... { 

  state; 

  methods 

 } 

 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 23 

You can also define several classes within the same file with one of the classes containing your main() 
method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.16 Overloading The Object Constructor 
 
In Java the method that gets overloaded the most is probably the constructor method. Overloading 
constructors allows you to build new objects in different initial states. Overloading effectively means having 
different versions of the same method in the same class... each version doing a different job. You can also 
overload other methods but this is not something you will need to do very often; not nearly as often as you 
will want to overload constructors. The following modification to the Branch class gives it three constructors,  
 
The 3rd one is a funny one… it’s that word this again. When used in this context it refers to the current class 
and calls the constructor with one string argument. If an instance of the Branch is created without any 
arguments being passed to the constructor such as 
 
Branch blackBurn = new Branch(); 
then rather than some error occurring the use of this in this context acts as a kind of default creation... 
whether you want this to happen is of course another matter... 
 
public class Branch { 

private static final String START_NUMBER = "1000"; 
 
 private String theName; 
   private Customer[] theCustomerList; 
   private int numCustomers; 
   private String nextAccountNumber; 
 

public Branch(String aName, String startAccount) { 
theName = aName; 

  theCustomerList = new Customer[10]; // no more than 10 customers... 
      numCustomers = 0; 
      nextAccountNumber = startAccount; 

} 
 

public Branch(String aName) { 
theName = aName; 

  theCustomerList = new Customer[10]; // no more than 10 customers... 
      numCustomers = 0; 
      nextAccountNumber = START_NUMBER; 
  } 
 

public Branch() { 
this("No Name Given"); 

} 

 class1 { 

 

 } 

 

 class2 { 

   main() 

 } 

 

 class3 { 

 

} 

If you do this you must ensure that you save the file with a name 

the same as the class containing your main() method otherwise the 

interpreter will not be able to find to find the main() method to 

commence interpretation and execution of your application. 

In the example opposite the file would have to be saved as 

Class2.java. 

 

In this case the Java compiler (javac) will actually produce three 

separate class files 

class1.class 

class2.class 

class3.class 

 

 

Take a look at the String class in 

the java.lang package... this has 7 

constructors. 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 24 

 
 rest of the class code... 
 

2.17 Class Constants 
Also demonstrated in the above code, this is how we define class constants in Java 

private static final String START_NUMBER = 1000; 
 
 

3. SOME JAVA BASICS 
 

3.1 Scalars and Objects 
 
Java treats all the usual simple data types as scalars, not objects. The scalar types are, 
 byte, short, int , long     float, double     char, boolean 
 
All are manipulated as in many other languages. All other data types, as you define them and use them are 
treated as objects. In this sense Java is not quite a pure object oriented language as say Smalltalk. 
Sometimes you will need to treat integers, reals etc as objects and Java makes provision for this with the 
Wrapper feature. Wrappers allow, for example, a simple integer data type to be converted into an Integer 
object so that it can them be treated as an object for processing. See the later section on Object Wrappers 
for more details. 
 

3.2 Literals 
 
Literal is a programming language term, which essentially means that what you type is what you get.  For 
example, if you type 100 in a Java program, you automatically get an integer with the value 100. If you type 
'a', you get a character with the value a. Literals may seem intuitive most of the time, but there are some 
special cases of literals in Java for different kinds of numbers, characters, strings, and boolean values. 
 
3.2.1 Number Literals 
There are several integer literals. For example, 100 is an integer literal of type int (although you can assign it 
to a variable of type byte or short because it's small enough to fit into those types). An integer literal larger 
than an int is automatically of type long. You also can force a smaller number to a long by appending an L or 
1 to that number (for example, 4L is a long integer of value 4). Negative integers are preceded by a minus 
sign-for example, -45. 
 
Integers can also be expressed as octal or hexadecimal: a leading 0 indicates that a number is octal-for 
example, 0777 or 0004. A leading 0x (or 0X) means that it is in hex (0xFF, 0XAF45). 
 
Floating-point literals usually have two parts: the integer part and the decimal part-for example, 5.677777. 
Floating-point literals result in a floating-point number of type double, regardless of the precision of that 
number. You can force the number to the type float by appending the letter f (or F) to that number-for 
example, 2.56F. You can use exponents in floating-point literals using the letter e or E followed by the 
exponent (which can be a negative number): 10e45 or .36E-2. 
 
3.2.2 Boolean Literals 
Boolean literals consist of the keywords true and false. These keywords can be used anywhere you need a 
test or as the only possible values for boolean variables. 
 
3.2.3 Character Literals 
Character literals are expressed bya single character surrounded by single quotes: ' a' , , # ' , , 3' , and so on. 
Characters are stored as 16-bit Unicode characters. 
 
There are also String literals. These are dealt with later in the notes. 
 
 
 
 
 



www.java.computing.me.uk 

www.computing.me.uk                       Page 25 

3.2.4 A Possible Problem When Using Floating-point Literals 
 
From the above...  “Floating-point literals result in a floating-point number of type double, regardless of the 
precision of that number. You can force the number to the type float by appending the letter f (or F) to that 
number-for example, 2.56F.” 
 
This means that if you attempt to do something like, 

float y = 15.456; 
You will get a compilation error something like the following, 
 
Incompatible type for declaration. Explicit cast needed to convert double to float. 
              float  y = 15.456; 
 
This occurs because by default the literal 15.456 is of type double. There are three ways out of the 
problem...  

• declare y as a double    double y = 15.456; 

• append f after the literal    float y = 15.456f; 

• use a cast        float y = (float)15.456; 
 

3.3 Some of the more common Java operators 
 

 
The Arithmetic Operators, 
 + - * /    as usual, (integer division truncates fractional part) 
 %     modulo (for integers), 
The Increment and Decrement Operators, 
 ++x    is equivalent to the more familiar x = x + 1; 
 --y     is equivalent to the more familiar y = y - 1; 
 
 y = ++x   x is increased by 1 and then its value is assigned to y 
 y = x++   x is assigned to y and then the value of x is increased by 1 
 
Note that the assignment, x = 6/4 results in setting x to 1. 
 
 
3.3.1 The Relational Operators, 
 >  >=  <  <=    as usual, 
 ==       equal to, (test for equality), 
 !=       not equal to. 
 
 
3.3.2 The Logical Operators, 
  &&     AND 
  ||     OR 
  !     NEGATION. 
 
 
3.3.3 The Assignment Operator 
 Assignment  is   =   (a single equals sign),   so the statement,                area = length * breadth, 
assigns the result of length * breadth to the variable area. 
 
 
 
 
 
 
 
 



www.java.computing.me.uk 

www.computing.me.uk                       Page 26 

3.3.4 The if () else Construct 
This control construct has the format, 
 if (exp) statement;             if (exp) statement 1; else statement 2; 
 if (x == 5) y = y*p;             if ( x != 0) p = y/x; else p = 0; 
 
  if (x > 0) { 
   y = 3*p; 
   System.out.println(y + p); 
  } 
  else { 
   y = 3*q; 
   System.out.println(y + q); 
  }; 
 
 
 
3.3.5 The ? : Construct 
This selection construct has the form 
 variable = (boolean expression) ? p : q; 
 
If the boolean expression is true the variable is set to p, otherwise the variable is set to q. 
 
It is of course equivalent to 
 if (boolean expression) x = p; else x = q; 
 
 
3.3.6 The switch Construct 
The multi-selection construct of Java is the switch construct. The form is as follows... 
 switch (exp1) { 
   case <constant exp2>: statement; 
   case <constant exp3>: statement; 
        etc... 
   default               : statement; 
 }; 
 
exp1 is evaluated and control is transferred to whichever case matches. If no match takes place the default 
case is executed. 
 
switch (3*x-y) { 
 case 1 :  System.out.println("\nDenary Multiplication"); 
     range = denary; 
     < statements > 
     break; 
  case 2 :  System.out.println("\nOctal Multiplication"); 
     range = octal; 
     < statements > 
     break; 
  default : System.out.println("\nError message..."); 
} // End of switch  
 
3.3.7 The while and do while Constructs 
These control constructs have the format, 
   while (exp is true)  {statement;}        do {statements;} while (exp is true); 
 
count = 0;                  i = count = 0; 
while (i <= someval) {               do { 
  ++count;                 ++count; 
  statements;                statements; 
  ++i;                  ++i; 
}                    } while (i <= someval); 

 A common source of logic error is... 

  int x; 

  x = 5; 

  if (x = 3) System.out.println("x equals 3"); 

  else System.out.println("x equals 5"); 

 the above code will ALWAYS produce 

 x equals 3......why ? 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 27 

 
3.3.8 The for Construct 
This control construct has the format, 
 

for (exp1; exp2; exp3) statement;  

for (i = 0; i <= 20; ++i) { 
 System.out.println("i squared = " + x*x); 
}  // End of for loop  

for (x = 0, j = 1; x != 200; ++x, ++j) statement; 

 
 
 
 
 
Note : The for construct is really a disguised while construct. The loop continues while the 'centre' condition 
remains true... so for example the following are equivalent, 
 for (i = 0; i <= 20; ++i) {        i = 0; 

statements            while (i <=20)  { 
}                statements;  

                 ++i; 
                } 
You can also increment/decrement in steps other than 1, eg 

for (int i = 0; i < 20; i += 5) System.out.println(i); 
 
3.3.9 The break Statement 
  for (i = 0; i < MAX; ++i) { 
   if (i == VAL) break; 
   statement_1; statement_2; 
  } 
  statement 3; 
 
3.3.10 The continue Statement 

for (i = 0; i < MAX; ++i) { 
  if (i == VAL) { 

++count; 
continue; 

}; 
statement1 

 statement 2; 
} 

3.4 Arrays 
Arrays in Java are not pure objects. That is they do not understand messages and are treated very much in 
the same way as in non object oriented languages. 
 
3.4.1 Declaring Arrays 
 int[] num; declares num to be array of type int. 
 Dice d[];  declares d to be an array of type Dice (we assume that dice is a user defined class  

type) 
The declaration can also be written as  int num[]  either style is used. 
 
3.4.2 Array Allocation 
Declaring an array does not allocate space for the array. To allocate storage for an array you need to use the 
new operator to create an array of a specified size, 
 
 int num[]; 
 num = new int[20]  ; 
 
In Java it is usual to combine the declaration and allocation as follows, 
 int theTable[] = new int[100];  declares and creates an integer array to hold 100 elements (max) 
 String theNames[] = new String[20]; declares and creates a String array of 20 elements (max)  
 int aBlock[][] = new int[10][20];  declares and creates a 2 dimensional integer array  

 watch this... for (i = 1; i < end; ++i);    // the semi-colon after the bracket ) will cause 

       sum = sum +i;   // big trouble if  it is intended to repeatedly add i to sum 

 

If i equals VAL the variable count is incremented and the continue 

statement causes the for loop to execute again, missing out the 

statements 1 and 2. 

You will probably gather that both break and continue are really 

disguised goto statements. They are however restricted gotos in 

that they jump only forward to known points and hence do not 

contradict the concepts of structured programming. 

 

When variable i is equal to VAL the break statement is 

executed causing control to pass to statement 3. If i 

does not equal VAL, statements 1 and 2 are executed. 

 

 

num 

 num 
? 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 28 

[10 rows, 20 cols] 
 
Actually Java only supports single dimensional arrays. Hence the last example actually declares aBlock to 
be an array of 10 arrays each of 20 elements. 
 
 The second way to allocate storage to an array is with a static initialiser, 
   int buffer[] = {1,2,3,4,5};  declares and allocates an integer array of 5 elements 
Reference to the elements is in the usual way... 
  theTable[3] = buffer[0];    theBlock[0][4] = theTable[7]; 
 
Following on from the description of reference semantics the following code 
 int theTable[] = new int[100];   actually produces the situation as follows 
 
 
 
 
You can find the length of an array with theArray.length 
Note length is not a message… it is in fact an attribute of the array. 
 
Arrays of Arrays 
The statement... “a bank has a list of Branches and each Branch has a list of Accounts” can be modeled as... 
Branch theBank[]; 
Account aBranch[];  
 
 
 
 
 
 
 
 

3.5 Strings 
 

 
A String is an object, but there are facilities in Java for manipulating String objects that do not appear to be 
object oriented but which have been included probably to conform to facilities in other, non object oriented 
languages (C++ probably…).  
 
When the javac compiler meets a declaration such as 

String aCountry = “Scotland”; 
“Scotland” is a string literal and aCountry is a reference to it. 
 
the compiler does the work of creating the String object and then assigns the address of the newly created 
String object to the variable aCountry. 
 
As a matter of good OO practice you are advised to always think and treat Strings as objects. In which case, 
to assign a new string value to aCountry would take something like 
 
  aCountry = new String(“England”); 
 
Strings are immutable.  That means, that once created, a String can never be altered in any way.  All the 
methods that appear to alter a String actually return a new String - leaving the original untouched. 
 
The compiler makes sure that each String constant actually results in a String object. This means that when 
we do something like, 

aCountry = “Scotland”; 
and then later 

aCountry = “England”;  

storage for 100 integers  

theTable 



www.java.computing.me.uk 

www.computing.me.uk                       Page 29 

we have not ‘changed the value’ of the String object but we have created a new String object (“England”) 
and made aCountry point to it. If you like we have changed the value of the reference, not the ‘original’ String 
object. 
 
3.5.1 Testing if Two Strings are Equal 
The problems with doing this are part of a wider picture when testing if two objects are the ‘same’. This wider 
issue is discussed later in these notes. 
 
3.5.2 A note on the == operator and the equals() method for String Objects 
Newcomers to the Java language often confuse the use of the operator  = = and the method equals() when 
comparing two Strings. The former, since it is an operator, is used to compare scalars . When it is used to 
compare scalars it carries out a comparison on their values. If it used in the context of comparing String 
objects it is not really comparing the objects at all. It simply compares the addresses of the two objects. The 
method equals() must be used to compare the equality of String objects.  
 
Not understanding the difference between the operator  == and the method equals() can lead to some very 
subtle programming errors, so be awake. It’s all to do with reference semantics. 
 
Try this example out for yourself and try to explain the outputs. 
 
public class A { 
 public static void main(String args[]) { 
  String  s1, s2; 
  s1 = new String("jeff"); s2 = new String("jeff"); 
  if (s1 == s2) System.out.println("oh dear... what's gone wrong"); 
  if (s1.equals(s2)) System.out.println("Good... thats better"); 
 } 
} 
 
The output is,       Good... thats better 
 
s1 is not equal to s2. They are not String objects but each is a variable whose value will be the address of a 
String object. They have different values since they hold different address values. However the String object 
pointed to by s1 and the String object pointed to by s2 have the same state and in this sense are the ‘same’. 
In our software model of the real world we would probably want the answer to ‘is s1 equal to s2’ to be yes, 
they are the same. 
 
If we now use the alternative approach of creating a String object, that of creating a String literal, 
public class A { 
 public static void main(String args[]) { 
  String  s1, s2; 
  //s1 = new String("jeff"); s2 = new String("jeff"); 
  s1 = "jeff";  

s2 = "jeff"; 
  if (s1 == s2) System.out.println("oh dear... what's gone wrong"); 
  if (s1.equals(s2)) System.out.println("Good... thats better"); 
 } 
} 
The output this time is,    oh dear... what's gone wrong 
          Good... thats better 
 
The reason the string-equality bug is such a common pitfall for novice Java programmers is that simple tests 
to show its existence appear to confirm that the code is all right.  The reason for this is that the Java compiler 
is rather clever with String literals and what it does with them confuses the issue of equal references versus 
equal values (as well as the issue of scalars versus objects).  Java pools its String literals. The effect of this 
is that if you use the String literal "jeff" in two places, Java will not make two String objects containing the 
string "jeff", it will instead use the same object twice, giving you two references to the same object.  
Consequently, in order to demonstrate that two different String objects can contain the same String values, 
you can't simply make two Strings objects with equal values directly from String literals, because they will 
turn out to have the same references as well and "==" will behave like "equals" in that case. 

“jeff” 

s1 

 

“jeff” 

s2 

 

“jeff” 

s1 

 

s2 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 30 

 
Strings created by the use of a String literal undergo a process known as interning.  That is, the compiler will 
check to see if that String has already be created, and if it has, returns a reference to the original String 
rather than to a new one.  This only really bothers us if we use the equality operator '==' which tests if the 
objects compared are actually the same object. 
 
In a more general context, if you want to test that two objects of the same class are 'equal' you have 
to write your own equals() method to override the one defined in the Object superclass. 
 
 

4. CLASS VARIABLES AND CLASS METHODS 
 
 

4.1 Class Variables and Class Methods Explained 
 
Class (static) variables are a kind of global variable. They are available to every object instanced from the 
class. Java requires every variable to be declared within a class and so uses the keyword static in front of a 
variable to indicate that the variable is to be shared by all instances of the class. No matter how many 
instances there are of a class there is only one copy of the static (class) variable.  
 
Class (static) methods are methods that are sent to classes. They are messages sent to classes rather than 
to instances of the class. It is the class that understands the message. An object will not understand the 
(class) method. 
 
public class DemoClass { 
// Class variables and constants 
 private static final int MAX_OBJECTS = 3; 
 private static int objectCount = 0; 
 // Instance variables 

private int objectNumber; 
 // possibly  more instance variables... 
 
 public DemoClass() { 
  if (this.canCreateObject()) { 
   objectNumber = ++objectCount; 
   // initialisation of other instance variables... 
  } 
 }  
 
  // class methods 
 public static int getObjectCount() { 
  return objectCount; 
 } 
 
 public static boolean canCreateObject() { 
  return objectCount <= MAX_OBJECTS; 
 } 
 
 public static void report() { 
  System.out.println("Too many objects..."); 
 } 
 
 // instance methods 
 public int getNumber() { 
  return objectNumber; 
 } 
 
 public void whoAmI() { 
  System.out.println("You are object number " + this.getNumber()); 

The keyword final makes MAX_OBJECTS 

a constant. Note when the class variable is 

initialised… it cannot be done in the 

constructor otherwise initialisation would 

be done every time a new object is 

instanced! 



www.java.computing.me.uk 

www.computing.me.uk                       Page 31 

 } 
} 
public class TestDemo{ 
 public static void main(String args[]) { 
  int count; 
  DemoClass obj1, obj2, obj3,obj4; 
  obj1 = new DemoClass(); 
  if (!DemoClass.canCreateObject()) DemoClass.report(); 
  obj2 = new DemoClass(); 
  if (!DemoClass.canCreateObject()) DemoClass.report(); 
  count = DemoClass.getObjectCount(); 
  System.out.println("Current number of objects = " + count); 
 
  obj3 = new DemoClass(); 
  if (!DemoClass.canCreateObject()) DemoClass.report(); 
 
  count = DemoClass.getObjectCount(); 
  System.out.println("Current number of objects = " + count); 
 
  obj2.whoAmI(); 
 
  obj4 = new DemoClass(); 
  if (!DemoClass.canCreateObject()) DemoClass.report(); 
  else obj4.whoAmI(); 
 } 
} 
 

4.2 Class (static) methods can only make changes to class variables 
 
Class (static) methods can only make changes to class variables (static variables) or variables local to the 
class method. In other words a class method cannot change an instance variable. If you try to do something 
like 
 public static void incGlobalVar(int n) { 

globalVar += n; 
  instanceVar += n; 
 } 
 
 
This seems reasonable... we cannot have a class changing the state of any of its instances 
 

4.3 Class Methods in The Java Classes 
 

There are many examples of class methods throughout the Java classes, so be aware of them and use 
them. For example if you wanted to convert an integer to a string you might do something like the code 
below 
 public class A { 
  public static void main(String args[]) { 
   int x = 864; 
   String aString = String.valueOf(x); 
   System.out.println(aString.length()); 
  } 
 } 
 
If you look in the java.lang package at the String class you will find an entry as follows, 
 public static String valueOf(int i) 
  Returns a String object that represents the value of the specified integer.  
       Parameters:  
            i - the integer  
 

You will get an error message, 

Can't make a static reference to nonstatic 

variable instanceVar in class DemoClass. 

  instanceVar += n; 

  ^ 

 

canCreateObject() and report() are class 

methods and hence the receiver of these 

methods is the Class DemoClass 



www.java.computing.me.uk 

www.computing.me.uk                       Page 32 

This tells us that the method valueOf() is a class (static) method and is used as the Java code above 
demonstrates. 
 

4.4 The System.out Class Variable 
 
A familiar example of a class variable can be seen in the line of Java code 

 System.out.println(aString); 
 
the variable out is a static (class) variable of the System class. If you look at its definition within the System 
class you will see that it is defined as a PrintStream type. That is out is defined as an instance of the 
PrintStream class. Hence out is a PrintStream object to which we send the println() message. If we write the 
line as 
       (System.out).println(aString); 
 
then maybe the point is further made. As a general rule remember that the dot operator is evaluated left to 
right. 
 
 

5. THE VECTOR CLASS 
 

5.1 Vectors are Like Arrays, but… 
 
The Vector class implements a growable array of objects. Like an array, it contains components that can be 
accessed using an integer index. However, the size of a Vector can grow or shrink as needed to 
accommodate adding and removing items after the Vector has been created. The Vector class operates by 
creating an initial storage capacity and then adding to this capacity as needed. The access methods 
provided by the Vector class support array-like operations and operations related to the size of Vector 
objects. The array-like operations allow elements to be added, deleted and inserted. They also allow tests to 
be performed on the contents of Vectors and specific elements to be retrieved. 
 
A Vector can be used to store different Object types. Clearly accessing and processing the elements then 
becomes a more complex task as the type of an element has to first of all be determined before sensible 
processing can be carried out. All in all a very useful data structure… 
 

5.2 A Simple Vector Example 
 
public class Student { 
 private String name; 
 private String pin; 
 
 public Student(String aName, String aPin) { 
  name = aName; 
  pin = aPin; 
 } 
 
 public String getName() { 
  return name; 
 } 
 

public String getPin() { 
  return pin; 
 } 
} 
 
 
import java.util.*; 
public class Register { 
 private Vector theList; 
 



www.java.computing.me.uk 

www.computing.me.uk                       Page 33 

 public Register() { 
  theList = new Vector(); 
 } 
 
 public void addStudent(Student aStudent) { 
  theList.addElement(aStudent); 
 } 
 
 public boolean removeStudent(Student aStudent) { 
  return theList.removeElement(aStudent); 
 } 
 
 public int getPositionOf(Student aStudent) { 
  int thePosition = theList.indexOf(aStudent); 
  return thePosition;   // -1 if not found...   
 } 
 
 public void show() { 
  Student nextStudent; 
  for (int i = 0; i < theList.size(); ++i) { 
   nextStudent = (Student)theList.elementAt(i); 
   System.out.println(nextStudent.getName()); 
  } 
 } 
 
 public static void main(String arg[]) { 
  Register rg = new Register(); 
  Student jeff = new Student("Jeff","1234");  
  Student pat = new Student("Pat","4321"); 
  Student john = new Student("John","4567");  
  Student debbie = new Student("Debbie","6789"); 
  rg.addStudent(jeff); rg.addStudent(pat); 
  rg.addStudent(john); rg.addStudent(debbie); 
  rg.show();   
  if (rg.removeStudent(jeff)) System.out.println("Ok student removed"); 
  else System.out.println("Student not found..."); 
  rg.show(); 
  System.out.println("Position of Pat = " + rg.getPositionOf(pat)); 
  
  System.out.println("Position of Jenny = " + rg.getPositionOf(new Student("jenny","2222"))); 
 } 
} 
 
 

5.3 The elements() Method 
 
One of the methods of the Vector class deserves some special mention. Consider this alternative 
implementation of the show() method from the above Register class. 
 

public void show() { 
  Student nextStudent; 
  Enumeration e = theList.elements(); 
  while (e.hasMoreElements()) { 
   nextStudent = (Student)e.nextElement(); 
   System.out.println(nextStudent.getName()); 
  } 
 } 
 
 

A vector stores its elements as Object 

type. It doesn't matter what type the 

incoming object is, it is stored as an 

Object type. This means that when we 

retrieve an object from a Vector we 

have to cast the object back to the 

'original' type. What happens if we 

don't know what type to cast to??? see 

the Wrapper example later... 

See later comments on this 

indexOf() method 



www.java.computing.me.uk 

www.computing.me.uk                       Page 34 

The elements() method of the Vector class produces an Enumeration object. The Enumeration object returns 
with a list of the elements of the vector, in this case the list of names stored in the vector. The Enumeration 
object (e) has two methods to allow us to access the list, 
 
public boolean hasMoreElements() 
     Tests if this enumeration contains more elements (names in this case) 
      Returns true if this enumeration contains more elements (names), 
    false otherwise.  
 
public Object nextElement() 
          Returns the next element (name) of this enumeration.  
 
These two methods allow the elements of the vector object to be scanned as the above example 
demonstrates. 
 
 

5.4 Use of Object Wrappers with Vectors 
 
Vectors store objects. Hence when using a vector to store scalars (int, chars etc) a number of problems arise 
in that the scalars have to be converted to objects before adding to the vector and then converted from 
objects back to scalars when they are removed from the vector. This is where the object wrapper facility is 
vital.  
 
import java.util.*; 
public class WrapperDemo { 
 public static void main(String args[]) { 
  Vector theVector = new Vector(); 
  String aString = new String("Jeff"); 
    // theVector.addElement(5); 
    theVector.addElement(new Integer(5)); 
    theVector.addElement(new Character('A')); 
    theVector.addElement(aString); 
 

Object obj; 
  Class aClass; 
  String str; 
  int anInt; 
  for (int i = 0; i < theVector.size(); ++i)  { 
   obj = theVector.elementAt(i); 
   aClass = obj.getClass(); 
   str = aClass.getName(); 
   System.out.println("Object type is -> " + str); 
   if (str.equals("java.lang.Integer")) { 
    anInt = ((Integer)theVector.elementAt(i)).intValue(); 
    System.out.println("Some arithmetic... " + (2*anInt)); 
   }    
   } // end for 
 } 
} 
 
 
 
 
 
 
 
 
 
 
 

Can't do this since a Vector stores objects and 

5 is a scalar 

 

So we have to wrap the scalar within an Integer 

object 

 

              Likewise with a char scalar... 

 

               But… we’re ok with an object… 

 

 the lines    

   obj = theVector.elementAt(i); 

   aClass = obj.getClass(); 
   str = obj.getClass().getName(); 

 need some further explanation… 

• theVector.elementAt(i) returns the object at the ith position in the Vector 

• this object is then sent the message getClass() which returns the class of the object 

as a Class type 

• this Class type is then sent the message getName() which returns the name of the 

class as a String object type. 

 



www.java.computing.me.uk 

www.computing.me.uk                       Page 35 

 
Output from a run was... 

Object type is -> java.lang.Integer 
Some arithmetic... 10 
Object type is -> java.lang.Character 
Object type is -> java.lang.String 

 
 

5.5 The Vector and the equals() method 
 
Consider the method from the Register class. It makes use of the indexOf() method from the Vector class 
(theList was defined as... theList = new Vector()). 
 

public int getPositionOf(Student aStudent) { 
  int thePosition = theList.indexOf(aStudent); 
  return thePosition;   // -1 if not found...   
 } 
 
The Java API entry for the indexOf() method from the Vector class is as follows,  
 
 public final int indexOf(Object elem) 
     Searches for the first occurrence of the given argument, testing for equality using the equals method.  
     Parameters:  
          elem - an object.  
     Returns:  
          the index of the first occurrence of the argument in this vector; returns -1 if the object is not found. 
 
This implies that the indexOf() method searches the element of the Vector to find if it's argument is stored in 
the Vector. It does this by comparing the argument with each element in turn until it finds a match or it 
reaches the end of the Vector. This means that it has to compare for equality between two stored objects. 
Hence it has to be able to compare two Student objects to see if they are the same. If two Student objects 
are to be compared then we must include an equals() method as part of the Student class interface. All 
classes in the Java API are provided with a 'default' equals() method. They all inherit one from the Object 
superclass. However for the equals() method to work properly for any particular class that class has to 
override the method from the Object class. The reason for this is that the inherited equals() does not really 
work the way we might reasonably expect it to. 
 
The version of equals() inherited from the Object class does not compare the states of two objects, in this 
case two Student objects, but simply compares if they are the same object. It works like the == operator in 
that it simply tests if the variables referencing the two objects are equal. That is, do the two variables point to 
the same object. This can be confirmed by the following example. 
 
import java.util.*; 
public class EqualsTester { 
 public static void main(String arg[]) { 
  Student x = new Student("Jeff","1234");  
  Student y = new Student("Jeff","1234"); 
  // Before we add an equals() method to the Student class... 
  // the output is ???? 
  // After we add an equals() method to the Student class... 
  // the output is Yes... the same student... 
  if (x.equals(y)) System.out.println("Yes... the same student..."); 
  else System.out.println("????"); 
 } 
} 
 
The equals() method that we need to include in the Student class is, 
 

public boolean equals(Object obj) { 
  Student aStudent = (Student)obj; 



www.java.computing.me.uk 

www.computing.me.uk                       Page 36 

  return  ( this.getName().equals(aStudent.getName()) && 
       this.getPin().equals(aStudent.getPin())); 
 } 
 
Generally in software applications when we ask if two ‘things’ are equal we usually mean do they have the 
same value? Now in object technology we transfer the word value to the word state. If we now ask are two 
objects equal we generally mean do they have the same state. Two objects will be equal if their 
corresponding instance variables are equal. In ‘everyday’ terms we would expect the question… does 
Student x equal Student y… to be yes. 
 
In developing an equals method for the Student class we may have been tempted to write something like 
 

public boolean equals(Student aStudent) { 
  return  ( this.getName().equals(aStudent.getName()) && 
      this.getPin().equals(aStudent.getPin())) 
 } 
 
This however will not work in the context that we want it to. Certainly it will return true or false depending 
whether the two students are the 'same' or not. We have not overridden the equals() method from the Object 
class but simply given the Student class a new method calls equals. The failure is due to the fact that the 
indexOf() method will search the Student class for an equals() method that takes an Object as an argument. 
This is how it was designed by the Sun Java engineers. It will not find one and therefor will search the 
superclass (Object) where it will find the matching equals() method and hence we are back to the original 
problem. So the moral is... we must override the equals() method not just overload it . 
 

5.6 The Banking Classes Updated to Use Vectors and Encapsulation 
 
Since we have replaced the array data structure with a Vector data structure there is no need to carry an 
instance variable to count the current numBranches, numCustomers and numAccount is the respective 
classes. These values can be retrieved when required by using the size() method from the Vector class. This 
method returns the current number of elements stored in the Vector. 
 
5.6.1 The Account Class 
 
public class Account { 
 private String accNumber; 
   private int balance; 
 
   public Account(String accN,int initBal) { 
    accNumber = accN; 
     this.setBalance(initBal); 
 } 
 
   public String getAccountNumber() { 
  return accNumber; 
 } 
 
   public void setBalance(int anAmount) { 
    balance = anAmount; 
 } 
 
   public int getBalance() { 
  return balance; 
 } 
 
   public void credit(int anAmount) { 
  this.setBalance(this.getBalance() + anAmount); 
 } 
 
 public boolean debit(int anAmount) { 



www.java.computing.me.uk 

www.computing.me.uk                       Page 37 

    if (this.getBalance() - anAmount >= 0) { 
   this.setBalance(this.getBalance() - anAmount); 
        return true; 
      } 
      else return false; 
   } 
} 
 
 
5.6.2 The Customer Class 
import java.util.*; 
public class Customer { 
 private String theName; 
   private Vector theAccountsList; 
 
 public Customer(String aName) { 
  theName = aName; 
  theAccountsList = new Vector(); 
 } 
 
   public String getName() { 
  return theName; 
 } 
 
   public int getNumAccounts() { 
    return theAccountsList.size(); 
 } 
 
   public void addAccount(Account anAccount) { 
    theAccountsList.addElement(anAccount); 
 } 
 
   public Vector getAccounts() { 
  return theAccountsList; 
   } 
 
   public Account getAccount(String anAccountNumber) { 
  Enumeration accList = theAccountsList.elements(); 
  Account nextAccount = null; 
      while (accList.hasMoreElements()) { 
   nextAccount = (Account)accList.nextElement(); 
        if (nextAccount.getAccountNumber().equals(anAccountNumber)) 
         return nextAccount; 
      } 
  return nextAccount; 
   } 
} 
 
 
5.6.3 The Branch Class 
import java.util.*; 
public class Branch { 
 private static int RATE = 5; 
 private static int OD_LIMIT = 100; 
 
 private String theName; 
   private Vector theCustomerList; 
   private String nextAccountNumber; 
 
 public Branch(String aName, String startAccount) { 



www.java.computing.me.uk 

www.computing.me.uk                       Page 38 

  theName = aName; 
  theCustomerList = new Vector(); 
    nextAccountNumber = startAccount; 
 } 
 
   public String getName() { 
  return theName; 
 } 
 
   public void addCustomer(Customer aCustomer) { 
    theCustomerList.addElement(aCustomer); 
 } 
 
   public int getNumCustomers() { 
    return theCustomerList.size(); 
 } 
 
   public Vector getCustomers() { 
  return theCustomerList; 
   } 
 
 public void createAccount(Customer aCustomer) { 
  Account aNewAccount = new Account(nextAccountNumber,0); 
  aCustomer.addAccount(aNewAccount); 
    int tempInt = new Integer(nextAccountNumber).intValue(); 
      ++tempInt; 
      nextAccountNumber = new Integer(tempInt).toString(); 
   } 
 
   public void credit(String anAccountNumber, int anAmount) { 
  Account targetAccount = this.getAccount(anAccountNumber); 
      targetAccount.credit(anAmount); 
   } 
 
   public boolean debit(String anAccountNumber, int anAmount) { 
  Account targetAccount = this.getAccount(anAccountNumber); 
    boolean debitOk = targetAccount.debit(anAmount); 
    return debitOk; 
   } 
 
  public Account getAccount(String accNumber) { 
    Account aTempAccount = null; 
      Customer nextCustomer; 
  Enumeration custList = theCustomerList.elements(); 
  while (custList.hasMoreElements()) { 
   nextCustomer = (Customer)custList.nextElement(); 
        aTempAccount = nextCustomer.getAccount(accNumber); 
        if (aTempAccount != null) break; 
  } 
      return aTempAccount; 
   } 
 
 
 
 
   public Customer getCustomer(String aName) { 
  Customer nextCustomer = null; 
    Enumeration e = theCustomerList.elements(); 
      while (e.hasMoreElements()) { 
        nextCustomer = (Customer)e.nextElement(); 



www.java.computing.me.uk 

www.computing.me.uk                       Page 39 

   if (aName.equals(nextCustomer.getName())) { 
         break; 
   } 
      } 
      return nextCustomer; 
   } 
 
 public boolean transfer(Account fromAccount,Account toAccount,int anAmount) { 
  if (fromAccount.debit(anAmount)) { 
       toAccount.credit(anAmount); 
        return true; 
  } 
  else return false; 
  } 
} 
 
5.6.4 The Bank Class 
import java.util.*; 
public class Bank { 
 private String theName; 
   private Vector theBranchList; 
   
 public Bank(String aName) { 
  theName = aName; 
  theBranchList = new Vector(); 
   } 
 
   public String getName() { 
  return theName; 
 } 
 
   public void addBranch(Branch aBranch) { 
    theBranchList.addElement(aBranch); 
 } 
 
   public Enumeration getBranches() { 
  return theBranchList.elements(); 
   } 
 
 public int getNumBranches() { 
    return theBranchList.size(); 
 } 
} 
 
 


