
www.java.computing.me.uk

www.computing.me.uk Page 1

Programming
In Java

BOOK 4

Streams and
Threads

www.java.computing.me.uk

www.computing.me.uk Page 2

CONTENTS

1. STREAMS ... 3
1.1 Writing and Reading Java Primative Types (the scalars) .. 3

1.1.1 Writing Scalars to a File ... 3
1.1.2 Reading Scalars from a File... 3

1.2 Example 1 - Handling More Than One Exception ... 4
1.3 Reading and Writing Text .. 5

1.3.1 Reading Text ... 5
1.3.2 Writing Text.. 5

1.4 Example 2 .. 6
1.5 Where to Handle (catch) the Exceptions ... 7

1.5.1 Catching The Exception in the Calling Method .. 7
1.5.2 Catching The Exception in the Method Where the Exception Occurs.. 8

1.6 Example 3 .. 8

2. THE PROPERTIES CLASS .. 9
2.1 Example ... 9

3. THE STREAMTOKENIZER CLASS ... 11
4. SERIALISATION AND PERSISTENT OBJECTS .. 12

4.1 Serialization of Objects (Saving Objects)... 12
4.2 Transient instance variables .. 13
4.3 A Persistent Object Example ... 13

5. THREADS ... 15
5.1 Creating Threads ... 15

5.1.1 Example 1 - Inheriting From the Thread Class .. 15
5.1.2 Example 2 - Implementing the Runnable Interface .. 16

5.2 Inheritance vs Runnable .. 17
5.2.1 Example - Thread vs Runnable ... 17

5.3 Shared Object - Synchronization ... 18
5.3.1 Example 4 .. 19
5.3.2 What Happens if One Synchronised Method calls another Synchronised Method ? 20
5.3.3 What happens if one Synchronised Method Depends on Another Synchronised Method ? 20

5.4 The Readers and Writers Problem .. 21
5.4.1 Example 5 - Possible System lock ... 21
5.4.2 Example 6 - A Solution Using the wait() and notify() methods ... 23
5.4.3 Example 7 - Multiple Writers and Readers .. 25

5.5 TheYield() Method.. 27
5.5.1 Example 8 .. 27

5.6 Thread Priorities ... 28

6. SOME BITS AND PIECES .. 29
6.1 Copying Objects ... 29
6.2 public class Vector extends Object implements Cloneable ... 29

6.2.1 Shallow Copy ... 31
6.2.2 Deep Copy ... 32
6.2.3 The Cloneable Interface .. 33

6.2.3.1 Example 1 .. 33
6.2.3.2 Example 2 .. 34

6.3 Broadcasting Mechanisms - Observable Class and Observer Interface ... 35

www.java.computing.me.uk

www.computing.me.uk Page 3

1. STREAMS

Java input and output is based on streams. A stream is a sequence of bytes moving from a source to a
destination. If an application is writing to a stream then the application is the source. If it is reading from a
stream then it is the destination.

1.1 Writing and Reading Java Primative Types (the scalars)

1.1.1 Writing Scalars to a File

1.1.2 Reading Scalars from a File

Some of the more useful applications of exceptions can be found in stream/file processing.

FileOutputStream
DataOutputStream file

The application

A DataOutputStream object converts

the scalars to bytes

A FileOutputStream object is an output

stream for writing bytes to a File.

dos.writeInt(anInt);

writes the data from the

application to the data

output stream

scalar

byte
byte

the data output stream then sends the bytes to the file

output stream which then writes the bytes to file

FileInputStream
DataInputStream file

The application

A DataInputStream object converts the

bytes to primitive Java data types

A FileInputStream object is an byte

stream for reading bytes from a File.

dis.readInt(anInt);

reads the data from the file input stream

into the application It assembles the bytes

to the appropriate scalar according to the

method used

scalar
byte

byte

the file input stream gets the bytes from the

file and passes them to the data input stream

www.java.computing.me.uk

www.computing.me.uk Page 4

1.2 Example 1 - Handling More Than One Exception

To catch more than one exception the catch statement can be stacked up with each catch handling a
different exception.

import java.io.*;
public class FileReader {
 private FileInputStream fis;
 private DataInputStream dis;
 private FileOutputStream fos;
 private DataOutputStream dos;
 public void writeData(String theFileName) {
 int anInt = 100;
 try {
 fos = new FileOutputStream(theFileName);
 dos = new DataOutputStream(fos);
 for (int i = 0; i < 5; ++i) {
 dos.writeInt(anInt);
 anInt += 100;
 }
 dos.close();
 }
 catch (IOException e) {
 System.out.println("Problem with writing...");
 }
 }

 public void readData(String theFileName) {
 int anInt;
 try {
 fis = new FileInputStream(theFileName);
 dis = new DataInputStream(fis);
 anInt = dis.readInt();
 while (1 == 1) {
 System.out.println(anInt);
 anInt = dis.readInt();
 }
 }
 catch (FileNotFoundException e) {
 System.out.println("File not found...");
 }
 catch (EOFException e) {
 System.out.println("EOF reached...");
 try {
 dis.close();
 }
 catch (IOException ee) {}
 }
 catch (IOException e) {
 System.out.println("Problem with reading...");
 }
 }
}

First create a FileOutPutStream object.

A FileOutputStream object is an output

stream for writing data to a File.

Then create a DataOutputStream with

the FileOutPutStream object as the

constructor parameter, so that the dos

knows which fos it is working with..

A DataOutputStream lets an application

write primitive Java data types to an output

stream in a portable way. An application can

then use a DataInputStream to read the

data back in.

DataOutputStream and DataInputStream objects are

used to write/read Java primative types - scalars

First create a FileInPutStream object.

A FileInputStream object is an input

stream for reading data from a File.

Then create a DataInputStream with the

FileInPutStream object as the constructor

parameter, so that the dis knows which

fis it is working with.

A DataInputStream lets an application

read primitive Java data types from an input

stream in a portable way.

readInt() throws an EOFException when

the end of file is reached.

We use this to exit the reading loop.

We need the try/catch block since

close() may throw an IOException.

When you stack a number of exceptions you have to be aware of any possible

inheritance relationships. The order of the three exceptions is dictated by the

fact that IOException is superclass to both EOFException and

FileNotFoundException

 IOException

 EOFException FileNotFoundException

www.java.computing.me.uk

www.computing.me.uk Page 5

public class FileReaderTest {
 public static void main(String arg[]) {
 FileReader f = new FileReader();
 f.writeData("IntFile.txt");
 f.readData("IntFile.txt");
 System.out.println("End of main()...");
 }
}

1.3 Reading and Writing Text

1.3.1 Reading Text

1.3.2 Writing Text

FileOutputStream
PrintWriter file

The application

A PrintWriter object allows an application to

write character data to an output stream

A FileOutputStream object is a byte output

stream for writing bytes to a File.

pw.println(aString)

the PrintWriter object takes the

character string, converts the characters

to bytes and then sends the bytes onto

the FileOutStream object

String
byte

byte

the FileOutputStream object writes the bytes to file

FileInputStream

BufferedReader

file

The application

A InputStreamReader object converts the

bytes to characters. An InputStreamReader is

a bridge from byte streams to character

streams

A FileInputStream object is a byte

input stream for reading bytes from a

File.

br.readLine();

reads the characters from the

buffered reader into the

application

String

byte
byte

the FileInputStream object gets the bytes from the file

and passes them to the InputStreamReader

InputStreamReader

characters

A BufferedReader object is used to read characters from an

InputStreamReader, buffering characters so as to provide for

the efficient reading of characters, arrays, and lines. It

assembles the characters from the InputStreamReader

according to the method used (eg readLine() returns a String)

FileOutputStream fos = new FileOutputStream(theFileName);

PrintWriter pw = new PrintWriter(fos);

The FileOutputStream object needs to know about the file and

the PrintWriter object needs to know about the

FileOutPutStream. It is passed a reference to it.

FileInputStream fis = new FileInputStream(theFileName);

InputStreamReader isr = new InputStreamReader(fis);

BufferedReader br = new BufferedReader(isr);

www.java.computing.me.uk

www.computing.me.uk Page 6

1.4 Example 2

import java.io.*;
public class TextReaderWriter {
 private String[] theBuffer;
 private int bufferCount;

 public TextReaderWriter(int n) {
 theBuffer = new String[n];
 bufferCount = 0;
 }

 public void readFile(String theFileName) {
 FileInputStream fis;
 InputStreamReader isr;
 BufferedReader br;
 String aLine;
 try {
 fis = new FileInputStream(theFileName);
 isr = new InputStreamReader(fis);
 br = new BufferedReader(isr);
 while ((aLine = br.readLine()) != null) {
 theBuffer[bufferCount++] = aLine;
 System.out.println(aLine);
 }
 br.close();
 fis.close();
 }
 catch (FileNotFoundException e) {
 System.out.println("File not found...");
 }
 catch (IOException e) {
 System.out.println("Problem with reading...");
 }
 }
 public void writeFile(String theFileName) {
 FileOutputStream fos;
 PrintWriter pw;
 try {
 fos = new FileOutputStream(theFileName);
 pw = new PrintWriter(fos);
 for (int i = 0; i < bufferCount; ++i) {
 pw.println(theBuffer[i].toUpperCase());
 System.out.println(theBuffer[i].toUpperCase());
 }
 pw.close();
 fos.close();
 }
 catch (FileNotFoundException e) {
 System.out.println("File not found...");
 }
 catch (IOException e) {
 System.out.println("Problem with reading...");
 }
 }

}

The FileInputStream object (fis)

is byte stream

An InputStreamReader is a bridge

from byte streams to character

streams: It reads bytes and

translates them into characters

according to a specified character

encoding. The encoding that it

uses may be specified by name, or

the platform's default encoding

may be accepted.

Make sure you get these in the right order, otherwise if you close the fos first the

pw will have no where to buffer to as it closes and you will loose data.

www.java.computing.me.uk

www.computing.me.uk Page 7

public class TextReaderWriterTest {
 public static void main(String arg[]) {
 TextReaderWriter f = new TextReaderWriter(200);
 f.readFile("raven.txt");
 f.writeFile("newRaven.txt");
 System.out.println("End of main()...");
 }
}

1.5 Where to Handle (catch) the Exceptions

1.5.1 Catching The Exception in the Calling Method

This way the method announces that it may throw a FileNotFoundException or IOException. The thrown
object is handled (caught) by the method that calls this method.

import java.io.*;
public class AccountClass {

private String theFile;

 public AccountClass(String aFileName) throws FileNotFoundException, IOException {
 String accStr;
 FileInputStream fis;
 BufferedReader br;
 theFile = aFileName;
 fis = new FileInputStream(theFile);
 br = new BufferedReader(new InputStreamReader(fis));
 while ((accStr = br.readLine()) != null) {
 System.out.println(accStr);
 }
 br.close();
 }
}

import java.io.*;
public class ExceptionDemo {

public static void main(String args[]) {
 try {
 AccountClass anAccount = new AccountClass("Accounts.txtt");

}
 catch (FileNotFoundException e) {
 System.out.println("Account file not found...");
 }
 catch (IOException e) {
 System.out.println("Read error in account file...");
 }
 System.out.println("End of main()...");
 }
}

www.java.computing.me.uk

www.computing.me.uk Page 8

1.5.2 Catching The Exception in the Method Where the Exception Occurs

This way the method itself handles the FileNotFoundException or IOException. The previous approach is
generally to be preferred since the way is which the error is handled is probably best left to the user of the
method where the error occurs

import java.io.*;
public class AccountClass {

private String theFile;

public AccountClass(String aFileName) {
 String accStr;
 FileInputStream fis;
 BufferedReader br;
 theFile = aFileName;
 try {
 fis = new FileInputStream(theFile);
 br = new BufferedReader(new InputStreamReader(fis));
 while ((accStr = br.readLine()) != null) {
 System.out.println(accStr);
 }
 br.close();
 }
 catch (FileNotFoundException e) {
 System.out.println("Account file not found...");
 }
 catch (IOException e) {
 System.out.println("Read error in account file...");
 }
 }
}

import java.io.*;
public class ExceptionDemo {

public static void main(String args[]) {
 AccountClass anAccount = new AccountClass("Accounts.txtt");
 System.out.println("End of main()...");
 }
}

1.6 Example 3

This example includes trapping a NumberFormatException when a line of text cannot be converted to an
integer. The program is allowed to continue after reporting the exception. To do this a nested try/catch block
is used.

import java.io.*;
public class FileReader {
 private FileInputStream fis;
 private BufferedReader br;

 public void getData(String theFileName) {
 int anInt;
 String tempStr;
 try {
 fis = new FileInputStream(theFileName);
 br = new BufferedReader(new InputStreamReader(fis));
 while ((tempStr = br.readLine()) != null) {
 try {
 anInt = Integer.parseInt(tempStr);

www.java.computing.me.uk

www.computing.me.uk Page 9

 System.out.println(anInt);
 }
 catch (NumberFormatException e) {
 System.out.println("Bad integer format in file...");
 } // of inner try
 } // of while
 br.close();
 } // of outer try
 catch (FileNotFoundException e) {
 System.out.println("File not found...");
 }
 catch (IOException e) {
 System.out.println("Problem with reading...");
 }
 }
}

public class FileReaderTest {
 public static void main(String arg[]) {
 FileReader f = new FileReader();
 f.getData("IntFile.txt");
 System.out.println("End of main()...");
 }
}

2. THE PROPERTIES CLASS

The Properties class is a subclass of Hashtable.
Each key and its corresponding value in the property list is a string.
Instances of the Properties class can be read from or written to a stream.
The Properties class declares several new access methods over the Hashtable. The getProperty() method
allows a property to be retrieved using a String object as the key. A second overloaded getProperty() method
allows a value string to be used as the default in case the key is not contained in the Properties instance.
The load() and save() methods are used to load a Properties object from an input stream and save it to an
output stream.
The propertyNames() method provides an enumeration of all the property keys, and the list() method
provides a convenient way to print a Properties object on a PrintStream object.

2.1 Example

import java.util.*;
import java.io.*;
public class SystemDetails {
 private Properties thePropertyTable;

 public SystemDetails() {
 thePropertyTable = new Properties();
 this.build();
 }

 private void build() {
 String[] keys = { "HP_LaserJet_Series_II",
 "TRIO_DATAFAX",
 "Sharp_JX-9500E",
 "HP_LaserJet_5L"};
 String[] values = { "HPPCL,LPT1:,15,45",

The output is…

100

200

300

Bad integer format in file...

400

500

End of main()...

With a text file like

this…

100

200

300

jeff

400

500

Key strings cannot contain spaces… seems to

cause problems when loading from file back

to the Properties object.

www.java.computing.me.uk

www.computing.me.uk Page 10

 "DATAFAX,WINSERVE:,15,45",
 "HPPCL,LPT1:,15,45",
 "HPW,LPT1:,15,45"};
 for (int i = 0; i < 4; ++i) thePropertyTable.put(keys[i],values[i]);
 }

 public void showFullDetails() {
 thePropertyTable.list(System.out);
 }

 public void showKeys() {
 String key;
 Enumeration e = thePropertyTable.propertyNames();
 while (e.hasMoreElements()) {
 key = (String)e.nextElement();
 System.out.println(key);
 }
 }
 public void showValues() {
 String key, value;
 Enumeration e = thePropertyTable.propertyNames();
 while (e.hasMoreElements()) {
 key = (String)e.nextElement();
 value = thePropertyTable.getProperty(key);
 System.out.println(value);
 }
 }

 public void writeToFile() {
 try {
 FileOutputStream fos = new FileOutputStream("SystemFile.txt");
 thePropertyTable.save(fos,"[System Details]");
 fos.close();
 }
 catch (IOException e) {}
 }

 public void readFromFile() {
 Properties temp = new Properties();
 try {
 System.out.println("Reading Properties object from file...");
 temp.load(new FileInputStream("SystemFile.txt"));
 temp.list(System.out);
 }
 catch (FileNotFoundException e) {}
 catch (IOException e) {}
 }
}

public class SystemDetailsTest {
 public static void main(String arg[]) {
 SystemDetails theSystem = new SystemDetails();
 theSystem.showFullDetails();
 theSystem.showKeys();
 theSystem.showValues();
 theSystem.writeToFile();
 theSystem.readFromFile();
 }
}

list the Properties object on the

screen

FileInputStream() may raise a FileNotFoundException

Create an enumeration of the keys

load() may raise an IOException

www.java.computing.me.uk

www.computing.me.uk Page 11

The created file, SystemFile.txt, looks like this.

#[System Details]
#Sat Jan 16 16:48:17 GMT 1999
TRIO_DATAFAX=DATAFAX,WINSERVE:,15,45
Sharp_JX-9500E=HPPCL,LPT1:,15,45
HP_LaserJet_Series_II=HPPCL,LPT1:,15,45
HP_LaserJet_5L=HPW,LPT1:,15,45

3. THE STREAMTOKENIZER CLASS

A class to turn an input stream into a stream of tokens. There are a number of methods that define the
lexical syntax of tokens. This class performs lexical analysis of a specified input stream and breaks the input
up into tokens. It can be extremely useful when writing simple parsers. The method nextToken() returns the
next token in the stream--this is either one of the constants defined by the class (which represent end-of-file,
end-of-line, a parsed floating-point number, and a parsed word) or a character value. pushBack() "pushes"
the token back onto the stream, so that it is returned by the next call to nextToken(). The public variables
sval and nval contain the string and numeric values (if applicable) of the most recently read token. They are
applicable when the returned token is TT_WORD and TT_NUMBER. lineno() returns the current line
number.
The remaining methods allow you to specify how tokens are recognized. wordChars() specifies a range of
characters that should be treated as parts of words. whitespaceChars() specifies a range of characters that
serve to delimit tokens. ordinaryChars() and ordinaryChar() specify characters that are never part of tokens
and should be returned as-is. resetSyntax() makes all characters "ordinary." eolIsSignificant() specifies
whether end-of-line is significant. If so, the TT_EOL constant is returned for end-of-lines. Otherwise they are
treated as whitespace.

A token is a character or sequence of characters, (a String). Tokens are separated by white spaces. The
method nextToken() returns the next token and appends the token to either the public instances variables
(String)sval or (double)nval. So for example with the tokens abcd efg, 2 strings are produced and with 123 a
double is produced. If the token starts with a character then the token is treated as a string. The real problem
is when the first character is a digit...

import java.io.*;
public class Tokenizer {
 public static void main (String[] args) {
 InputStream is ;
 StreamTokenizer s ;
 try {
 is = new FileInputStream("Minute3.txt");
 s = new StreamTokenizer(is);
 s.wordChars('/','/');
 int theTType;
 theTType = s.nextToken();
 while (theTType != StreamTokenizer.TT_EOF) {
 if (theTType == StreamTokenizer.TT_WORD)
 System.out.println(s.sval);
 if (theTType == StreamTokenizer.TT_NUMBER)
 System.out.println(s.nval);
 theTType = s.nextToken();
 }
 }
 catch (FileNotFoundException f) { System.out.println("File not found"); }
 catch (IOException i) { System.out.println("Problem with IO"); }
 }
}

www.java.computing.me.uk

www.computing.me.uk Page 12

MEETING : Sales
DATE : 22/1/95
Sales meeting held on 22/1/95
For the first 2 meetings product
abc123 was discussed
along with product 123abc.

MEETING
Sales
DATE
22
/1/95
Sales
meeting
held
on
22
/1/95
For
the

first
2
meetings
product
abc123
was
discussed
along
with
product
123
abc.

4. SERIALISATION AND PERSISTENT OBJECTS

4.1 Serialization of Objects (Saving Objects)

Most meaningful Java applications need to provide a way to save the objects they create and to restore the
objects at some later date. The capability for an object to exist from one run of the application to another is
known as persistence. Serialization is the key to implementing persistence. Serialization provides the
capability to write an object to a stream and to read the object back at a later time. Serialization allows you to
store objects in files, to communicate them access networks and to use them in distributed applications.

When an object is written to a stream, information about its class must be stored along with the object.
Without class information there is no way to reconstruct an object that is read from a stream. In addition to
class information all objects that are referenced by that object must also be stored. If the referenced objects
are not stored the references of the stored object are of course meaningless.

For an object to be made persistent its class must be serialized. Serializability of a class is enabled by the
class implementing the java.io.Serializable interface. The serialization interface has no methods or fields and
serves only to identify the semantics of being serializable.

To allow subtypes of non-serializable classes to be serialized, the subtype may assume responsibility for
saving and restoring the state of the supertype's public, protected, and (if accessible) package fields. The
subtype may assume this responsibility only if the class it extends has an accessible no-arg constructor to
initialize the class's state. It is an error to declare a class Serializable in this case. The error will be detected
at runtime.

During deserialization, the fields of non-serializable classes will be initialized using the public or protected
no-arg constructor of the class. A no-arg constructor must be accessible to the subclass that is serializable.
The fields of serializable subclasses will be restored from the stream.

Classes that require special handling during the serialization and deserialization process must implement
special methods with these exact signatures:

private void writeObject(java.io.ObjectOutputStream out) throws IOException
private void readObject(java.io.ObjectInputStream in) throws IOException, ClassNotFoundException;

The writeObject method is responsible for writing the state of the object for its particular class so that the
corresponding readObject method can restore it. The default mechanism for saving the Object's fields can be
invoked by calling out.defaultWriteObject. The method does not need to concern itself with the state
belonging to its superclasses or subclasses. State is saved by writing the individual fields to the
ObjectOutputStream using the writeObject method or by using the methods for primitive data types
supported by DataOutput.

www.java.computing.me.uk

www.computing.me.uk Page 13

The readObject method is responsible for reading from the stream and restoring the object. It may call
in.defaultReadObject to invoke the default mechanism for restoring the object's non-static and non-transient
fields. The defaultReadObject method uses information in the stream to assign the fields of the object saved
in the stream with the correspondingly named fields in the current object. This handles the case when the
class has evolved to add new fields. The method does not need to concern itself with the state belonging to
its superclasses or subclasses. State is saved by writing the individual fields to the ObjectOutputStream
using the writeObject method or by using the methods for primitive data types supported by DataOutput.

4.2 Transient instance variables

A transient instance variable is one whose value is not saved when the object is serialized. In the example
theAddress instance variable in the Person class is made transient. When the Person object is read from the
disc this instance variable is set to null.

4.3 A Persistent Object Example

All classes that form part of the serialised object must implement the Serializable interface. Person objects
will be the persistent objects.

import java.io.*;
public class Address implements Serializable {

private String theCity;
 private String thePostCode;

 public Address(String aCity,String aPostCode) {
 theCity = aCity;
 thePostCode = aPostCode;
 }
 public String toString() {
 return theCity + ":" + thePostCode;
 }
}

import java.io.*;
public class Person implements Serializable {
 private String theName;
 private Address theAddress;
 private transient long ticketNumber;

 public Person(String aName, Address anAddress) {
 this.setName(aName);
 this.setAddress(anAddress);
 this.setTicketNumber();
 }
 public void setName(String aName) {
 theName = aName;
 }
 public void setAddress(Address anAddress) {
 theAddress = anAddress;
 }
 public void setTicketNumber() {
 ticketNumber = Math.round(Math.random()*1000);
 }
 public String toString() {
 return theName + ":" + theAddress + ":" + ticketNumber;
 }
}

www.java.computing.me.uk

www.computing.me.uk Page 14

import java.io.*;
public class WritePerson {
 public static void main(String args[]) {
 Address newAddress = new Address("Manchester","M3 2KJ");
 Person me = new Person("Jeff",newAddress);
 System.out.println("Before write... " + me.toString());

 // Save the Person object...
 try {
 FileOutputStream fos = new FileOutputStream("Person.tst");
 ObjectOutputStream theObjectStream = new ObjectOutputStream(fos);
 theObjectStream.writeObject(me);
 theObjectStream.close();
 fos.close();
 }
 catch (IOException e) {
 System.out.println("\nIOException on attempt to open : " + e.getMessage());
 }
 }
}

import java.io.*;
public class ReadPerson {
 public static void main(String args[]) {
 try {
 FileInputStream fis = new FileInputStream("Person.tst");
 ObjectInputStream theObjectStream = new ObjectInputStream(fis);
 Person thePerson = (Person)theObjectStream.readObject();
 theObjectStream.close();
 fis.close();
 System.out.println("After read... " + thePerson.toString());
 // will have to set the ticketNumber variable...
 thePerson.setTicketNumber();
 System.out.println("After reset ticketNumber... " + thePerson.toString());
 }
 catch (ClassNotFoundException e) {
 System.out.println("Class not found... : " + e.getMessage());
 }
 catch (NotSerializableException e) {
 System.out.println("Not serializable error... : " + e.getMessage());
 }
 catch (FileNotFoundException e) {
 System.out.println("File error... can't find the Person file : " + e.getMessage());
 }
 catch (IOException e) {
 System.out.println("File read error... : " + e.getMessage());
 }
 }
}

When the Person object is read from disc, all the classes referenced by the de-serialised object need to be
available. If they are not then a ClassNotFound exception will be raised. Try removing the Address class
after writing and before reading and see the result.

Serialisation is at the heart of Java’s distributed computing strategy. Objects are transported around a
distributed system using Java’s Stream classes.

www.java.computing.me.uk

www.computing.me.uk Page 15

5. THREADS

A Thread is a single sequential flow of control within a process. This simply means that while executing
within a program, each thread has a beginning, a sequence, a point of execution occurring at any time during
runtime of the thread and of course, an ending. Thread objects are the basis for multi-threaded
programming. Multi-threaded programming allows a single program to conduct concurrently running threads
that perform different tasks.

A Thread terminates when its run() method is completed, or when the stop() method is called.

To execute a thread we call the thread's start() method. This puts the thread into the runnable state and
informs the host operating system that the thread can be run when its turn comes up in the scheduler. When
this happens the thread's run() method will be invoked. The thread will enter a queue of processes waiting
for processor time.

The strategy used to determine which thread should execute at a given time is known as scheduling. Java’s
approach to scheduling is referred to as pre-emptive scheduling. When a thread of higher priority becomes
runnable it preempts threads of lower priority and is immediately executed. The highest priority thread
continues to run until it is blocked, has its priority lowered or an even higher priority thread becomes
runnable.

Java provides two approaches to creating threads,

• you create a subclass of Thread and override the run() method to provide the entry point for the thread’s
execution.

• you create a class implemented from the Runnable Interface and then use this class to create Thread
instances.

5.1 Creating Threads

5.1.1 Example 1 - Inheriting From the Thread Class

public class Counter extends Thread {
 private int delay;

 public Counter(String theName, int aDelay) {
 super(theName);
 delay = aDelay;
 }
 public void run() {
 for (int i = 0; i < 50; ++i) {
 System.out.println(this.getName() + " count = " + i);
 try {
 Thread.sleep(delay);
 }
 catch (InterruptedException e) {}
 }
 }
}
public class ThreadTest {
 public static void main(String argv[]) {
 Counter t1 = new Counter("Thread_1",500);
 Counter t2 = new Counter("Thread_2",1250);
 t1.start();
 t2.start();
 while (1==1){};
 }
}

www.java.computing.me.uk

www.computing.me.uk Page 16

Output on one run looked like the following, read down columns left to right for the results.

Thread_1 count = 0
Thread_2 count = 0
Thread_2 count = 1
Thread_2 count = 2
Thread_2 count = 3
Thread_2 count = 4
Thread_2 count = 5
Thread_2 count = 6
Thread_2 count = 7
Thread_2 count = 8
Thread_2 count = 9
Thread_2 count = 10
Thread_2 count = 11
Thread_2 count = 12
Thread_2 count = 13
Thread_2 count = 14
Thread_2 count = 15
Thread_2 count = 16
Thread_2 count = 17
Thread_2 count = 18
Thread_2 count = 19
Thread_2 count = 20
Thread_2 count = 21
Thread_1 count = 1
Thread_1 count = 2
Thread_1 count = 3

Thread_1 count = 4
Thread_1 count = 5
Thread_1 count = 6
Thread_1 count = 7
Thread_1 count = 8
Thread_1 count = 9
Thread_1 count = 10
Thread_1 count = 11
Thread_1 count = 12
Thread_1 count = 13
Thread_1 count = 14
Thread_1 count = 15
Thread_1 count = 16
Thread_1 count = 17
Thread_1 count = 18
Thread_1 count = 19
Thread_1 count = 20
Thread_2 count = 22
Thread_2 count = 23
Thread_2 count = 24
Thread_2 count = 25
Thread_2 count = 26
Thread_2 count = 27
Thread_2 count = 28
Thread_2 count = 29

Thread_2 count = 30
Thread_2 count = 31
Thread_2 count = 32
Thread_2 count = 33
Thread_2 count = 34
Thread_2 count = 35
Thread_2 count = 36
Thread_2 count = 37
Thread_2 count = 38
Thread_2 count = 39
Thread_2 count = 40
Thread_2 count = 41
Thread_2 count = 42
Thread_2 count = 43
Thread_2 count = 44
Thread_2 count = 45
Thread_2 count = 46
Thread_2 count = 47
Thread_2 count = 48
Thread_2 count = 49
Thread_1 count = 21
Thread_1 count = 22
Thread_1 count = 23
Thread_1 count = 24
Thread_1 count = 25
Thread_1 count = 26
Thread_1 count = 27

Thread_1 count = 28
Thread_1 count = 29
Thread_1 count = 30
Thread_1 count = 31
Thread_1 count = 32
Thread_1 count = 33
Thread_1 count = 34
Thread_1 count = 35
Thread_1 count = 36
Thread_1 count = 37
Thread_1 count = 38
Thread_1 count = 39
Thread_1 count = 40
Thread_1 count = 41
Thread_1 count = 42
Thread_1 count = 43
Thread_1 count = 44
Thread_1 count = 45
Thread_1 count = 46
Thread_1 count = 47
Thread_1 count = 48
Thread_1 count = 49

5.1.2 Example 2 - Implementing the Runnable Interface

public class Counter implements Runnable {

private String theName;
 private int delay;

 public Counter(String aName, int aDelay) {
 theName = aName;
 delay = aDelay;
 }
 public void run() {
 for (int i = 0; i < 50; ++i) {
 System.out.println(theName + " count = " + i);
 try {
 Thread.sleep(delay);
 }
 catch (InterruptedException e) {}
 }
 }
}

public class ThreadTest {
 public static void main(String argv[]) {
 Thread t1 = new Thread(new Counter("Thread_1",500));
 Thread t2 = new Thread(new Counter("Thread_2",1250));
 t1.start();
 t2.start();
 }
}

Output is similar to the previous output

The Runnable interface contains just one

method run() which must be defined in the

class that implements the Runnable interface.

The Thread class has a constructor that takes

a Runnable object as its argument and creates

a Thread object from it.

The run() method of the t1 and t2 threads is

the run() method defined in the Counter class

which implements Runnable and hence Counter

objects are Runnable objects.

www.java.computing.me.uk

www.computing.me.uk Page 17

5.2 Inheritance vs Runnable

Creating Threads using the Runnable interface is a little more complex than inheriting from the Thread class.
However in many situations the Runnable approach is more convenient since the inheritance approach
requires your Thread class to be located within the Thread hierarchy.

So what’s the benefit of using a Runnable interface to create a thread ? One benefit may be in making a
existing class behave as a thread. Suppose you have an existing class X which you would like to become
part of the previous thread system. One possible solution is of course as follows,
theThread.start();

This solution means that you will have to amend the source code for class X. If you don’t want to change
(you’ll have to add a run method at least), or do not have access to, the source code of X, the following
diagram shows how this might be achieved.

The derived class Y can now be implemented as a thread class. (we can’t do…. class Y extends Thread, Y
already extends X).
5.2.1 Example - Thread vs Runnable
Comparison of the two approaches is demonstrated with the following...

Inheritance from Thread Implementing the Runnable interface
public class Server3 {
 public static void main(String args[]) {
 SimpleServer ss = new SimpleServer();
 ss.start();
 }
}

public class Server3 {
 public static void main(String args[]) {
 SimpleServer ss = new SimpleServer();
 }
}

public class SimpleServer extends Thread {
 public void run() {
 ConnectionHandler ch = new ConnectionHandler();
 ch.start();
 }
}

public class SimpleServer implements Runnable {
 private Thread aThread;
 public SimpleServer() {
 // create thread from this instance of SimpleServer
 aThread = new Thread(this);
 // Effectively start SimpleServer as a thread...
 aThread.start();
 }
 public void run() {
 ConnectionHandler ch = new ConnectionHandler();
 }
}

public class ConnectionHandler extends Thread {

}

public class ConnectionHandler implements Runnable {
 private Thread theThread;
 public ConnectionHandler() {
 // create thread from this instance of
 // ConnectionHandler
 theThread = new Thread(this);
 // effectively start the ConnectionHandler as a thread...
 theThread.start();
 }
 public void run() {
 }
}

Thread

Thread3 Thread1 Thread2

X

Y

Runnable

implements

Thread

Thread3 Thread1 Thread2
X

www.java.computing.me.uk

www.computing.me.uk Page 18

You could of course, if circumstances demand, use a 'mix' of the two approaches.

5.3 Shared Object – Synchronization

There are many situations where multiple threads must share access to common objects. Often the thread
objects have to synchronise their actions on the common object so that they can work together in an ordered
manner. There are times when you might want to co-ordinate access to database records where you have
one thread which is responsible for updating a record and another whose job it is to read a record. Here you
would need to ensure that the read thread did not attempt to access the record whilst the write thread was
updating the record. Java enables you to co-ordinate the actions of multiple threads using synchronised
methods. In this example we demonstrate 2 threads which share access to a common object (a StringBuffer
object - managed by a DataController object). Whilst one thread is processing the StringBuffer the other
thread must be denied access to the common object, otherwise the StringBuffer may become a mix of lower
and upper case.

Both objects (LowerConverter and UpperConverter) access the common object with the view of performing
different operations on the common object’s data. In this case by setting the characters of the common
objects StringBuffer to either lower case or upper case. If the conversion operation is not synchronised, then
either thread can interrupt the other's access to the operation and the outcome of the conversion is then
unpredictable. Variations on this shared object problem are often known as the producer/consumer problem.

Any object, which has synchronised methods, is associated with a monitor. The role of the monitor is to
control the way in which synchronised methods of the object are allowed access to the object. When a
synchronised method is invoked for an object it is said to acquire the monitor for that object. If the monitor is
not available, because it has been acquired by another method, the method has to wait until the monitor
becomes available before it can proceed. The monitor is automatically released when a method completes,
or when a wait() method is invoked from within the currently executing method.

In the example the common object is a DataController object. The synchronised methods convertToLower()
and convertToUpper() each attempt to acquire the monitor of the DataController object. Because these two
methods are synchronised the execution of convertToLower() cannot interrupt the execution of
convertToUpper, and vice-versa. Both methods run to completion when started. Only one synchronised
method can be invoked on an object at a given point in time. A method that is declared as synchronized
cannot be executed by more than one process at any time. Once a thread has gained access to a
synchronized method, it will finish the method before any other thread is allowed access to that or any other
synchronized method for that object.

It should be noted that synchronisation does not guarantee exclusive access to an object's data since a
method that is not declared as synchronised may execute independently. The lock is on the synchronised
method not the data item.

The monitor for the DataController object is an object that maintains a queue of synchronised methods
waiting to be sent to the dataController object

LowerConverter

 (aThread)

DataController the StringBuffer

This is the common object. It is has two

synchronised methods.

convertToLower() and convertToUpper()

DataController

monitor object
m2

m5

m1

m7

UpperConverter

(aThread)

www.java.computing.me.uk

www.computing.me.uk Page 19

m2 currently has the monitor and is being executed by the DataController object.
m2 has been sent to the DataController by Thread_1
m5 has been sent to the DataController by Thread_2, before m2 has completed, m5 is synchronised with m2
and therefore has to wait.
etc
Each time a synchronised method is sent to the DataController object it is placed in the queue of waiting
methods.

5.3.1 Example 4
public class DataController {
 private StringBuffer theStringBuf;

 public DataController(StringBuffer theData) {
 theStringBuf = theData;
 }

 public synchronized void convertToLower() {
 // public void convertToLower() {
 char ch;
 try {
 for (int i = 0; i < theStringBuf.length(); ++i) {
 ch = theStringBuf.charAt(i);
 if ((64 < ch) && (ch < 91)) {
 ch += 32;
 theStringBuf.setCharAt(i,ch);
 }
 // force a delay... simulate some longer processing
 Thread.sleep(100);
 }
 }
 catch(InterruptedException e) {}
 System.out.println("From Lower : string = " + theStringBuf);
 }

 public synchronized void convertToUpper() {
 // public void convertToUpper() {
 char ch;
 try {
 for (int i = 0; i < theStringBuf.length(); ++i) {
 ch = theStringBuf.charAt(i);
 if ((96 < ch) && (ch < 123)) {
 ch -= 32;
 theStringBuf.setCharAt(i,ch);
 }
 // force a delay... simulate some longer processing
 Thread.sleep(150);
 }
 }
 catch (InterruptedException e) {}
 System.out.println("From Upper : string = " + theStringBuf);
 }
}

 Note the alternative signatures of

the two conversion methods.

Causes the currently executing

thread to sleep (temporarily

cease execution) for the

specified number of

milliseconds. The thread does

not loose ownership of any

monitors.

www.java.computing.me.uk

www.computing.me.uk Page 20

public class LowerConverter implements Runnable {
 private DataController theController;
 public LowerConverter(DataController aController) {
 theController = aController;
 }

 public void run() {
 for (int i = 0; i < 10; ++i)
 theController.convertToLower();
 }
}

public class UpperConverter implements Runnable {
 private DataController theController;
 public UpperConverter(DataController aController) {
 theController = aController;
 }

 public void run() {
 for (int i = 0; i < 10; ++i)
 theController.convertToUpper();
 }
}

public class SynchExample {

public static void main(String args[]) {
 StringBuffer theData = new StringBuffer("java programming");
 DataController theController = new DataController(theData);
 Thread lowerThread = new Thread(new LowerConverter(theController));
 Thread upperThread = new Thread(new UpperConverter(theController));
 lowerThread.start(); upperThread.start();
 }
}

Without synchronisation the target string becomes a mix of upper and lower case. This is because the
accessBuffer() method gets interrupted by a change of thread…

From Upper : string = Java progRAMMING
From Upper : string = JAVA PROGRAMMing
From Lower : string = jAVA PROGRAMMING
From Upper : string = JAVA PrograMMING
From Upper : string = JAVA Programming
From Lower : string = java PROGRAMMING
From Upper : string = JAVA PROGRAmmiNG
From Upper : string = JAVA PROGRAmming
From Lower : string = java PROGRAMMING
From Upper : string = JAVA PROGRAMMiNG

From Upper : string = JAVA PROGRAMMing
From Lower : string = java proGRAMMING
From Upper : string = JAVA PROGRAMMing
From Lower : string = jAVA PROGRAMMING
From Upper : string = JAva progRAMMING
From Upper : string = JAva programming
From Lower : string = java programming
From Lower : string = java programming
From Lower : string = java programming
From Lower : string = java programming

Output when the method (accessBuffer()) was synchronized. This is the desired result.

From Lower : string = java programming
From Upper : string = JAVA PROGRAMMING
From Upper : string = JAVA PROGRAMMING
From Lower : string = java programming
From Upper : string = JAVA PROGRAMMING
From Upper : string = JAVA PROGRAMMING
From Lower : string = java programming
From Lower : string = java programming
From Upper : string = JAVA PROGRAMMING
From Upper : string = JAVA PROGRAMMING
From Lower : string = java programming

From Lower : string = java programming
From Upper : string = JAVA PROGRAMMING
From Upper : string = JAVA PROGRAMMING
From Lower : string = java programming
From Lower : string = java programming
From Upper : string = JAVA PROGRAMMING
From Upper : string = JAVA PROGRAMMING
From Lower : string = java programming
From Lower : string = java programming

5.3.2 What Happens if One Synchronised Method calls another Synchronised Method ?
If a synchronised method calls another synchronised method the outer method passes the monitor to the
inner method, When the inner method completes it passes the monitor back to the outer method. This way
the original outer method effectively maintains control of the monitor.

5.3.3 What happens if one Synchronised Method Depends on Another Synchronised Method ?
A problem can arise when a situation arises where the currently executing synchronised method waits on the
action of another synchronised method. This is looked at in the next section.

www.java.computing.me.uk

www.computing.me.uk Page 21

5.4 The Readers and Writers Problem

The features of the problem are,

• several concurrent process wish to access a common data structure

• some wish to read the data structure; some wish to write to the data structure

• shared read accesses to the data structure are required, but exclusive access is required by the writers

The classical application is the airline reservation system where many enquiries on a shared database are
allowed, but only one travel agent/booking office at a time can be allowed to change the database and
reserve a seat.
One way in which the readers/writers problem is approached is to delegate an object to have control of the
database so that other objects (readers and writers) wishing to access the database, send messages to the
controller object.

In this next section we look at a variation of the readers/writers problem where the writers and readers work
with a particular kind of data structure, that of a character buffer where the writers place items (characters)
and the readers remove items (characters).

At first it might seem no more than a synchronisation exercise that could easily be handled by the previous
synchronisation mechanism. All we have to do is to get the writing and reading operations synchronised and
all will be well. Indeed this is essentially the case... except with a twist in the tale if we are not careful.

We will take a very simple case first of all to demonstrate the major problem involved.

5.4.1 Example 5 - Possible System lock

import java.util.*;
public class DataController {
 private Vector theBuffer;

 public DataController() {
 theBuffer = new Vector();
 }

 public synchronized void write(int n) {
 try {
 Random rnd = new Random();
 char c;
 for (int i = 0; i < n; ++i) {
 c = (char)(65 + Math.abs(rnd.nextInt()) % 26);
 System.out.println("Writing : " + c);
 theBuffer.addElement(new Character(c));
 Thread.sleep(200);
 }
 }
 catch(InterruptedException e) {}
 }

a Reader

object

a Writer

object

DataController the database

www.java.computing.me.uk

www.computing.me.uk Page 22

 public synchronized void read(int n) {
 try {
 for (int i = 0; i < n; ++i) {
 while (this.hasNoData()) {
 System.out.println("Reader is waiting...");
 Thread.sleep(100);
 }
 char c = ((Character)theBuffer.firstElement()).charValue();
 System.out.println("Reading : " + c);
 theBuffer.removeElementAt(0);
 // force a delay... simulate some longer processing
 Thread.sleep(200);
 }
 }
 catch(InterruptedException e) {}
 }

 public boolean hasNoData() {
 return theBuffer.isEmpty();
 }
}

public class Writer implements Runnable {
 private DataController theController;

 public Writer(DataController aController) {
 theController = aController;
 }
 public void run() {
 theController.write(7);
 theController.write(4);
 theController.write(6);
 }
}

public class Reader implements Runnable {
 private DataController theController;

 public Reader(DataController aController) {
 theController = aController;
 }

 public void run() {
 theController.read(4);
 theController.read(4);
 theController.read(4);
 theController.read(4);
 }
}
public class SynchExample {

public static void main(String args[]) {
 DataController theController = new DataController();
 Thread theWriter = new Thread(new Writer(theController));
 Thread theReader = new Thread(new Reader(theController));
 theWriter.setPriority(3);

This is where the problem lies... while the buffer remains empty

the read() method goes into a loop, hoping that while it goes to

sleep something will appear in the buffer. The write() method is

the only way this can happen, but the read() and write()

methods are synchronised methods so whilst the read() has the

DataController object's monitor the write() method cannot

execute. Hence the whole system will hang. If the buffer

happens to be empty when the read() method has the monitor,

the system will lock.

www.java.computing.me.uk

www.computing.me.uk Page 23

 theReader.setPriority(4);
 theWriter.start(); theReader.start();
 }
}

Writing : H
Writing : Q
Writing : C
Writing : H
Writing : K
Writing : K
Writing : P
Reading : H
Reading : Q

Reading : C
Reading : H
Reading : K
Reading : K
Reading : P
Reader is waiting...
Reader is waiting...
Reader is waiting...
Reader is waiting...
Reader is waiting...

5.4.2 Example 6 - A Solution Using the wait() and notify() methods

The problem of locking can be solved with the use of the wait() and notify() methods.

The wait() and notify() methods are implemented in the Object class so that they are available to threads that
are not subclasses of Thread. That is, they are threads that have been created from the Runnable interface.
The wait() method causes a thread to deactivate and join a queue of other waiting threads. The notify()
method is used to notify waiting threads that their wait is over.

An object that is being accessed by a number of threads has a queue associated with it. This queue will hold
the thread objects that wish to gain access to the target object.

When an object executes the wait() method, the thread that currently has access to the object is deactivated
and placed in the queue of waiting threads. This allows any other thread to gain access to the object.

When an object executes the notify() method, any thread currently queueing for access to the object can be
activated and executed.

next thread is activated and

gains access to the object

Currently executing thread

the DataController

wait()

queue of waiting threads

t2 t5 t1 ...

the system is now

locked...

www.java.computing.me.uk

www.computing.me.uk Page 24

import java.util.*;
public class DataController {
 private Vector theBuffer;

 public DataController() {
 theBuffer = new Vector();
 }

 public synchronized void write(int n) {
 try {
 Random rnd = new Random();
 char c;
 for (int i = 0; i < n; ++i) {
 c = (char)(65 + Math.abs(rnd.nextInt()) % 26);
 System.out.println("Writing : " + c);
 theBuffer.addElement(new Character(c));
 Thread.sleep(200);
 }
 this.notify();
 }
 catch(InterruptedException e) {}
 }
 public synchronized void read(int n) {
 try {
 for (int i = 0; i < n; ++i) {
 while (this.hasNoData()) {
 System.out.println("Reader is waiting...");
 this.wait();
 }
 char c = ((Character)theBuffer.firstElement()).charValue();
 System.out.println("Reading : " + c);
 theBuffer.removeElementAt(0);
 // force a delay... simulate some longer processing
 Thread.sleep(200);
 this.notify();
 }
 }
 catch(InterruptedException e) {}
 }

 public boolean hasNoData() {
 return theBuffer.isEmpty();
 }
}

the write() method is now completed

and hence the dataController object

notifies the queue of waiting threads

that it is now available and so another

thread can be activated

the DataController object executes

the wait() method… the currently

active reader thread is deactivated

and placed on the queue of waiting

threads. Another thread can now gain

access to the DataController object.

the read() method is now completed

and hence the DataController object

notifies the queue of waiting threads

that it is now available and so another

thread can be activated

www.java.computing.me.uk

www.computing.me.uk Page 25

5.4.3 Example 7 - Multiple Writers and Readers

In this example we have reorganised the code somewhat and added a number of writers and readers. The
main differences from the previous code are,

• there are now 2 writer objects sending messages to the DataController object; an upeer case writer and a
lower case writer

• there are now 3 reader objects

• some of the writing and reading functionality has been taken out of the DataController and moved to the
writer and reader objects

import java.util.*;
public class DataController {
 private Vector theBuffer;

 public DataController() {
 theBuffer = new Vector();
 }

 public synchronized void write(char c) {
 try {
 theBuffer.addElement(new Character(c));
 Thread.sleep(200);
 this.notify();
 }
 catch(InterruptedException e) {}
 }

 public synchronized char read() {
 char c = ' ';
 try {
 while (this.hasNoData()) {
 System.out.println("Reader is waiting...");
 this.wait();
 }
 c = ((Character)theBuffer.firstElement()).charValue();
 theBuffer.removeElementAt(0);
 // force a delay... simulate some longer processing
 Thread.sleep(200);
 this.notify();
 }
 catch(InterruptedException e) {}
 return c;
 }

a Writer

object

a Reader

object

DataController the buffer

a Writer

object

a Reader

object

a Reader

object

www.java.computing.me.uk

www.computing.me.uk Page 26

 public boolean hasNoData() {
 return theBuffer.isEmpty();
 }
}

import java.util.*;
public class Writer implements Runnable {
 private DataController theController;
 private String id;
 private int startValue;

 public Writer(DataController aController,char kase) {
 theController = aController;
 if (kase == 'l') {
 startValue = 97;
 id = "lower";
 }
 else {
 startValue = 65;
 id = "upper";
 }
 }

 public void run() {
 this.writeToController(7);
 this.writeToController(4);
 this.writeToController(6);
 }

 public void writeToController(int n) {
 try {
 Random rnd = new Random();
 char c;
 for (int i = 0; i < n; ++i) {
 c = (char)(startValue + Math.abs(rnd.nextInt()) % 26);
 System.out.println("Writing from " + id + " : " + c);
 theController.write(c);
 Thread.sleep(200);
 }
 }
 catch(InterruptedException e) {}
 }
}

public class Reader implements Runnable {
 private DataController theController;
 private String id;

 public Reader(DataController aController, String id) {
 theController = aController;
 this.id = id;
 }

 public void run() {
 this.readFromController(4); this.readFromController(4);
 this.readFromController(4); this.readFromController(4);
 }

 public void readFromController(int n) {

www.java.computing.me.uk

www.computing.me.uk Page 27

 try {
 for (int i = 0; i < n; ++i) {
 char c = theController.read();
 System.out.println("Reading by " + id + " : " + c);
 // force a delay... simulate some longer processing
 Thread.sleep(200);
 }
 }
 catch(InterruptedException e) {}
 }
}

public class SynchExample {
 public static void main(String args[]) {
 DataController theController = new DataController();

 Thread theLowerCaseWriter = new Thread(new Writer(theController,'l'));
 Thread theUpperCaseWriter = new Thread(new Writer(theController,'u'));

 Thread bilboReader = new Thread(new Reader(theController,"Bilbo"));
 Thread frodoReader = new Thread(new Reader(theController,"frodo"));
 Thread gandalfReader = new Thread(new Reader(theController,"gandalf"));

 theLowerCaseWriter.start();
 theUpperCaseWriter.start();
 bilboReader.start();
 frodoReader.start();
 gandalfReader.start();
 }
}

5.5 TheYield() Method

5.5.1 Example 8
The yield() method causes the currently executing Thread object to yield. If there are other runnable Threads
they will be scheduled next. Note that you do not have control over the order of thread execution. This is
entirely up to the operating system and the Java Virtual Machine.

public class Driver {
 public static void main(String args[]) {
 Thread1 t1 = new Thread1(10);
 Thread2 t2 = new Thread2(15);
 Thread3 t3 = new Thread3(20);
 t1.start(); t2.start(); t3.start();
 }
}

public class Thread1 extends Thread {
 private int maxValue;

 public Thread1(int n) {
 super();
 maxValue = n;
 }

 public void run() {
 for (int i = 0; i < maxValue; ++i) {
 System.out.println("From " + this.getName() + " : " + i);
 if (i % 2 == 0) {
 System.out.println("\t" + this.getName() + " yielding...");
 this.yield();
 }
 }
 System.out.println(">>> " + this.getName() + " COMPLETED...");
 }
}

www.java.computing.me.uk

www.computing.me.uk Page 28

public class Thread2 extends Thread {
 private int maxValue;

 public Thread2(int n) {
 super();
 maxValue = n;
 }

 public void run() {
 for (int i = 0; i < maxValue; ++i) {
 System.out.println("From " + this.getName() + " : " + i);
 if (i % 3 == 0) {
 System.out.println("\t" + this.getName() + " yielding...");
 this.yield();
 }
 }
 System.out.println(">>> " + this.getName() + " COMPLETED...");
 }
}

import java.util.*;
public class Thread3 extends Stack implements Runnable {
 private int maxValue;
 private Thread t;

 public Thread3(int n) {
 super();
 maxValue = n;
 t = new Thread(this);
 }

 public void start() {
 t.start();
 }

 public void run() {
 for (int i = 0; i < maxValue; ++i) {
 System.out.println("From " + t.getName() + " : " + i);
 if (i % 4 == 0) {
 System.out.println("\t" + t.getName() + " yielding...");
 t.yield();
 }
 }
 System.out.println(">>> " + t.getName() + "
COMPLETED...");
 }
}

Not how the Runnable interface is used with Thread_3. There is no significance (or indeed use…) of the
Stack class, it is just to demonstrate how Runnable can be used.

Output from one run was as follows… read down left column then down right column for the results.

From Thread-1 : 0
From Thread-2 : 0
 Thread-2 yielding...
 Thread-1 yielding...
From Thread-3 : 0
 Thread-3 yielding...
From Thread-2 : 1
From Thread-2 : 2
From Thread-2 : 3
 Thread-2 yielding...
From Thread-1 : 1
From Thread-1 : 2
 Thread-1 yielding...
From Thread-3 : 1
From Thread-3 : 2
From Thread-3 : 3

From Thread-3 : 4
 Thread-3 yielding...
From Thread-2 : 4
From Thread-2 : 5
From Thread-2 : 6
 Thread-2 yielding...
From Thread-1 : 3
From Thread-1 : 4
 Thread-1 yielding...
From Thread-3 : 5
From Thread-3 : 6
From Thread-3 : 7
From Thread-3 : 8
 Thread-3 yielding...
From Thread-2 : 7
From Thread-2 : 8

From Thread-2 : 9
 Thread-2 yielding...
From Thread-1 : 5
From Thread-1 : 6
 Thread-1 yielding...
From Thread-3 : 9
From Thread-3 : 10
From Thread-3 : 11
From Thread-3 : 12
 Thread-3 yielding...
From Thread-2 : 10
From Thread-2 : 11
From Thread-2 : 12
 Thread-2 yielding...
From Thread-1 : 7
From Thread-1 : 8

 Thread-1 yielding...
From Thread-3 : 13
From Thread-3 : 14
From Thread-3 : 15
From Thread-3 : 16
 Thread-3 yielding...
From Thread-2 : 13
From Thread-2 : 14
>>> Thread-2 COMPLETED...
From Thread-1 : 9
>>> Thread-1 COMPLETED...
From Thread-3 : 17
From Thread-3 : 18
From Thread-3 : 19
>>> Thread-3 COMPLETED...

5.6 Thread Priorities

A thread's priority in an integer value between MIN_PRIORITY (=1) and MAX_PRIORITY (=10). These
constants are defined in the Thread class. A thread's priority is set when it is created and is set to the same
priority as the thread that creates it. The default priority is NORM_PRIORITY (=5). The priority of a thread
can be changed with setPriority(n) where 1 <= n <= 10.

www.java.computing.me.uk

www.computing.me.uk Page 29

6. SOME BITS AND PIECES

6.1 Copying Objects

There’s more to copying objects than you might at first think.
You should realise by now that if you do
Book aBook = new Book("Tolkein","09-08-07","The Hobbit",1234);
Book myBook = aBook;

You have not created a new Book object. Only one instance (object) of the Book class exists. You have
simply got 2 references (pointers) to it. The same Book object can be referred to as aBook or myBook. Both
variables point to the same Book object.

If you want to ‘copy’ the Book object in the sense that you have a ‘new’ (ie different) Book object with the
same state as the original Book object you will have to create a new Book object whose instance variables
have the same values as the original.

6.2 public class Vector extends Object implements Cloneable

A class implements the Cloneable interface to indicate to the clone method in class Object that it is legal for
that method to make a field-for-field copy of instances of that class. Attempts to clone instances that do not
implement the Cloneable interface result in the exception CloneNotSupportedException being thrown. The
Vector class implements the Cloneable interface hence it is possible to make copies of a Vector object using
the clone() method from the Object class.

We use the following classes to demonstrate object copying.
public class Book {
 private String author;

private String isbn;
 private String title;
 private int price;

 public Book(String anAuthor, String anISBN, String aTitle, int aPrice) {
 this.setAuthor(anAuthor);
 this.setISBN(anISBN);
 this.setTitle(aTitle);
 this.setPrice(aPrice);
 }

 public void setAuthor(String anAuthor) { author = anAuthor;}
 public String getAuthor() { return author;}
 public void setISBN(String anISBN) { isbn = anISBN; }
 public String getISBN() { return isbn;}
 public void setTitle(String aTitle) { title = aTitle; }
 public String getTitle() { return title;}
 public void setPrice(int aPrice) { price = aPrice; }
 public int getPrice() { return price; }
 public String toString() {
 return "Author : " + author + " ISBN : " + isbn + " Title : " + title + " Price : " + price;
 }
}

www.java.computing.me.uk

www.computing.me.uk Page 30

import java.util.*;
public class Catalogue {
 private Vector theBookList;

 public Catalogue() {
 theBookList = new Vector();
 }

 public void addBook(Book aBook) {
 theBookList.addElement(aBook);
 }

 public Book getBook(String isbn) {
 Book theBook = null;
 Enumeration e = theBookList.elements();
 while (e.hasMoreElements()) {
 theBook = (Book)e.nextElement();
 if (isbn.equals(theBook.getISBN())) return theBook;
 }
 return theBook;
 }

 public Catalogue copy() {
 // See later for the details of this method...
 }

 public String toString() {
 Book aBook;
 String tempStr = "";
 Enumeration e = theBookList.elements();
 while (e.hasMoreElements()) {
 aBook = (Book)e.nextElement();
 tempStr += aBook + "\n";
 }
 return tempStr;
 }
}

public class BookTest {
 public static void main(String args[]) {
 Catalogue theCatalogue = new Catalogue();
 Book aBook = new Book("Tolkein","09-08-07","The Hobbit",1234);
 theCatalogue.addBook(aBook);
 aBook = new Book("Gray","11-22-33","The Return",1000);
 theCatalogue.addBook(aBook);
 aBook = new Book("Jameson","00-01-02","The New Land",2000);
 theCatalogue.addBook(aBook);
 System.out.println("theCatalogue\n" + theCatalogue);

 Catalogue newCatalogue = theCatalogue.copy();
 System.out.println("newCatalogue\n" + newCatalogue);

 aBook = theCatalogue.getBook("11-22-33");
 aBook.setPrice(3456);

 System.out.println("theCatalogue\n" + theCatalogue);
 System.out.println("newCatalogue\n" + newCatalogue);
 }
}

www.java.computing.me.uk

www.computing.me.uk Page 31

Book

object

3

Book

object

2

6.2.1 Shallow Copy
The lines of interest in the BookTest class main method are...

Catalogue newCatalogue = theCatalogue.copy();
 aBook = theCatalogue.getBook("11-22-33");
 aBook.setPrice(3456);

which causes the following method to be executed, our first version of a copy() method for the Catalogue
class.

public Catalogue copy() {
 Catalogue theCopy = new Catalogue();
 Enumeration e = theBookList.elements();
 while (e.hasMoreElements()) theCopy.addBook((Book)e.nextElement());
 return theCopy;
}

Here’s the output from a run of BookTest,

C:\dump>java BookTest
theCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 1000
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

newCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 1000
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

theCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 3456
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

newCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 3456
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000
A new Catalogue is created and all the elements of the instance variable (theBookList, a Vector) from the
original Catalogue (theCatalogue) are copied to the corresponding instance variable of the newCatalogue.
Since these elements are pointers the result (as a picture) is as follows,

Although we have created a new Catalogue object (newCatalogue) we have not created any new Book
objects and hence both Catalogue objects reference the same ‘set’ of Book objects. This is why the change
of price of the ‘Gray’ book in theCatalogue object also effected the change of price of the ‘Gray’book in the
newCatalogue object..
In a case like this we say a shallow copy has been created.

the price of this book in

theCatalogue is changed

Book

object

1

theCatalogue newCatalogue

www.java.computing.me.uk

www.computing.me.uk Page 32

Book

object

3

Book

object

2

Book

object

1

theCatalogue Book

object

4
Book

object

5

Book

object

6

theCatalogue

6.2.2 Deep Copy
In order to create a deep copy we have a bit more work to do. This time we have to create new Book objects
as well.

Again the lines of interest in the BookTest class main method are...

Catalogue newCatalogue = theCatalogue.copy();

and our new version of copy is,

public Catalogue copy() {
 Book tempBook, bookCopy;
 Catalogue theCopy = new Catalogue();
 Enumeration e = theBookList.elements();
 while (e.hasMoreElements()) {
 tempBook = (Book)e.nextElement();
 bookCopy = new Book(tempBook.getAuthor(), tempBook.getISBN(), tempBook.getTitle(),
tempBook.getPrice());
 theCopy.addBook(bookCopy);
 }
 return theCopy;
}

We now have a true (?) copy of the original object. This is called a deep copy.
Here’s the output from a run of BookTest with the new version of copy(),

C:\dump>java BookTest
theCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 1000
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

newCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 1000
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

theCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 3456
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

newCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 1000
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

www.java.computing.me.uk

www.computing.me.uk Page 33

6.2.3 The Cloneable Interface
A class implements the Cloneable interface to indicate to the clone method in class Object that it is legal for
that method to make a field-for-field copy of instances of that class. Attempts to clone instances that do not
implement the Cloneable interface result in the exception CloneNotSupportedException being thrown.

So this means that if you want to be able to make copies of your objects your class should implement the
Cloneable interface. Here’s how you might do it...

6.2.3.1 Example 1

public class A implements Cloneable {
 private String theName;
 private int age;

 public A(String aName, int anAge) {
 this.setName(aName);
 age = anAge;
 }

 public void setName(String aName) { theName = aName; }

 public String getName() { return theName; }

 public int getAge() { return age; }

 public Object clone() {
 try { return (A)super.clone(); }
 catch (CloneNotSupportedException e) {
 // this shouldn't happen, since we are Cloneable
 throw new InternalError();
 }
 }

 public String toString() {
 return "Name = " + this.getName() + " Age = " + this.getAge();
 }
}

public class Atest {
 public static void main(String args[]) {
 A p = new A("Jeff",21);
 A q;
 q = (A)p.clone();
 System.out.println("For p :: " + p);
 System.out.println("For q :: " + q);

 p.setName("Pat");
 System.out.println("For p :: " + p);
 System.out.println("For q :: " + q);
 }
}

www.java.computing.me.uk

www.computing.me.uk Page 34

6.2.3.2 Example 2

If we remove the copy() method from the Catalogue class and make the Catalogue class implement the
Cloneable interface we can then provide a clone() method for the class, as follows,

public class Catalogue implements Cloneable

and implement the clone() method as,

public Object clone() {
 try { return (Catalogue)super.clone(); }
 catch (CloneNotSupportedException e) {
 // this shouldn't happen, since we are Cloneable
 throw new InternalError();
 }
}

Here’s the output from a run of BookTest, with the line
 Catalogue newCatalogue = theCatalogue.copy();

replaced by the line,
 Catalogue newCatalogue = (Catalogue)theCatalogue.clone();

C:\dump>java BookTest
theCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 1000
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

newCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 1000
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

theCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 3456
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

newCatalogue
Author : Tolkein ISBN : 09-08-07 Title : The Hobbit Price : 1234
Author : Gray ISBN : 11-22-33 Title : The Return Price : 3456
Author : Jameson ISBN : 00-01-02 Title : The New Land Price : 2000

So what kind of ‘copy’ does the clone() method make ???

www.java.computing.me.uk

www.computing.me.uk Page 35

6.3 Broadcasting Mechanisms - Observable Class and Observer Interface

Using the Observable class and Observer interface it is possible to create situations where changes in one
object (the Observable object) can be broadcast to other interested objects (the Observer objects).

From the Java API...

public class Observable extends Object

This class represents an observable object. It can be subclassed to represent an object that the application
wants to have observed. An observable object can have one or more observers. After an observable
instance changes, an application calling the Observable's notifyObservers() method causes all of its
observers to be notified of the change by a call to their update() method.

A class can implement the Observer interface when it wants to be informed of changes in observable
objects. The class whose instances are to be observers must implement the Observer interface and provide
an implementation of the update() method. This method is called whenever the observed object is changed.
An application calls an observable object's notifyObservers() method to have all the object's observers
notified of the change.

In our example that follows, the application is the test class.

Some formatting on the double output would help, but is ignored in order to keep the demo as simple as
possible.

import java.util.*;
public class Bank extends Observable {
 private double theBaseRate;

 public Bank() {
 this.setBaseRate(0);
 }

Observable

Observer

Observer

Observer

Observer

Bank

Observable Account

DepositAccount

Observer

CurrentAccount

www.java.computing.me.uk

www.computing.me.uk Page 36

 public void setBaseRate(double theRate) {
 theBaseRate = theRate;
 this.setChanged();
 System.out.println("From the Bank object... the baseRate is changed to : " + this.getBaseRate());
 }
 public double getBaseRate() {
 return theBaseRate;
 }
}

import java.util.*;
public class Account implements Observer {
 private String theHolderName;
 private double currentRate;
 private double theRateFactor;

 public Account(String aName) {
 this.setHolderName(aName);
 this.setCurrentRate(0.0);
 }

 public void setHolderName(String aName) {
 theHolderName = aName;
 }

 public String getHolderName() {
 return theHolderName;
 }

 public void setCurrentRate(double baseRate) {
 currentRate = (1 + theRateFactor) * baseRate;
 }

 public double getCurrentRate() {
 return currentRate;
 }

 public void setRateFactor(double anAmount) {
 theRateFactor = anAmount;
 }
 public void update(Observable o, Object arg) {
 double newBaseRate = ((Double)arg).doubleValue();
 this.setCurrentRate(newBaseRate);
 }
}

public class CurrentAccount extends Account {
 public CurrentAccount(String aName, double anAmount) {
 super(aName);
 this.setRateFactor(anAmount);
 }

 public String toString() {
 String tempStr = "";
 tempStr = "(Current Account) :: Name = " + this.getHolderName() + " : Rate = " +
this.getCurrentRate();
 return tempStr;
 }
}

Important : note this... must flag

the change in the Observable object.

www.java.computing.me.uk

www.computing.me.uk Page 37

public class DepositAccount extends Account {
 public DepositAccount(String aName, double anAmount) {
 super(aName);
 this.setRateFactor(anAmount);
 }

 public String toString() {
 String tempStr = "";
 tempStr = "(Deposit Account) :: Name = " + this.getHolderName() + " : Rate = " +
this.getCurrentRate();
 return tempStr;
 }
}

public class TestBank { // ‘the application’
 public static void main(String args[]) {
 Bank theBank = new Bank();
 CurrentAccount jeffsCurrentAcc = new CurrentAccount("jeff",0.005);
 CurrentAccount patsCurrentAcc = new CurrentAccount("pat",0.005);
 theBank.addObserver(jeffsCurrentAcc);
 theBank.addObserver(patsCurrentAcc);

 DepositAccount jeffsDepositAcc = new DepositAccount("jeff",0.010);
 DepositAccount patsDepositAcc = new DepositAccount("pat",0.010);
 theBank.addObserver(jeffsDepositAcc);
 theBank.addObserver(patsDepositAcc);

 theBank.setBaseRate(5.00);
 if (theBank.hasChanged()) {
 System.out.println("Bank has changed...");
 theBank.notifyObservers(new Double(theBank.getBaseRate()));
 }

 System.out.println(jeffsCurrentAcc);
 System.out.println(patsCurrentAcc);

 System.out.println(jeffsDepositAcc);
 System.out.println(patsDepositAcc);
 }
}

output from a run was...

C:\dump>java TestBank
From the Bank object... the baseRate is changed to : 0.0
From the Bank object... the baseRate is changed to : 5.0
Bank has changed...
(Current Account) :: Name = jeff : Rate = 5.0249999999999995
(Current Account) :: Name = pat : Rate = 5.0249999999999995
(Deposit Account) :: Name = jeff : Rate = 5.05
(Deposit Account) :: Name = pat : Rate = 5.05

